The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r (original) (raw)

References

  1. Brannan, C. I., Dees, E. C., Ingram, R. S. & Tilghman, S. M. The product of the H19 gene may function as an RNA. Mol. Cell. Biol. 10, 28–36 (1990).
    Article CAS PubMed PubMed Central Google Scholar
  2. Seidl, C. I., Stricker, S. H. & Barlow, D. P. The imprinted Air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export. EMBO. J. 25, 3565–3575 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  3. Bartolomei, M. S. Genomic imprinting: employing and avoiding epigenetic processes. Genes Dev. 23, 2124–2133 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  4. Gabory, A., Jammes, H. & Dandolo, L. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays 32, 473–480 (2010).
    Article CAS PubMed Google Scholar
  5. Hao, Y., Crenshaw, T., Moulton, T., Newcomb, E. & Tycko, B. Tumour-suppressor activity of H19 RNA. Nature 365, 764–767 (1993).
    Article CAS PubMed Google Scholar
  6. Yoshimizu, T. et al. The H19 locus acts in vivo as a tumor suppressor. Proc. Natl Acad. Sci. USA 105, 12417–12422 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  7. Smits, G. et al. Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians. Nat. Genet. 40, 971–976 (2008).
    Article CAS PubMed Google Scholar
  8. Gabory, A. et al. H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development 136, 3413–3421 (2009).
    Article CAS PubMed Google Scholar
  9. Wilusz, J. E., Sunwoo, H. & Spector, D. L. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 23, 1494–1504 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  10. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  11. Huntzinger, E. & Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99–110 (2011).
    CAS PubMed Google Scholar
  12. Cai, X. & Cullen, B. R. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13, 313–316 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  13. Dudek, K. A., Lafont, J. E., Martinez-Sanchez, A. & Murphy, C. L. Type II collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes. J. Biol. Chem. 285, 24381–24387 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  14. Chiang, H. R. et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992–1009 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  15. Mineno, J. et al. The expression profile of microRNAs in mouse embryos. Nucleic Acids Res. 34, 1765–1771 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  16. Yang, J. H., Shao, P., Zhou, H., Chen, Y. Q. & Qu, L. H. deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Res. 38, D123-D130 (2010).
    Google Scholar
  17. Lee, Y. S. & Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 21, 1025–1030 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  18. Lim, L. P. et al. The microRNAs of Caenorhabditis elegans. Genes Dev. 17, 991–1008 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  19. Knox, K. & Baker, J. C. Genomic evolution of the placenta using co-option and duplication and divergence. Genome Res. 18, 695–705 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  20. Zhao, Z., Chang, F. C. & Furneaux, H. M. The identification of an endonuclease that cleaves within an HuR binding site in mRNA. Nucleic Acids Res. 28, 2695–2701 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  21. Katsanou, V. et al. The RNA-binding protein Elavl1/HuR is essential for placental branching morphogenesis and embryonic development. Mol. Cell. Biol. 29, 2762–2776 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  22. Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009).
    Article CAS PubMed Google Scholar
  23. Runge, S. et al. H19 RNA binds four molecules of insulin-like growth factor II mRNA-binding protein. J. Biol. Chem. 275, 29562–29569 (2000).
    Article CAS PubMed Google Scholar
  24. Mallanna, S. K. et al. Proteomic analysis of Sox2-associated proteins during early stages of mouse embryonic stem cell differentiation identifies Sox21 as a novel regulator of stem cell fate. Stem Cells 28, 1715–1727 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  25. Coan, P. M., Ferguson-Smith, A. C. & Burton, G. J. Developmental dynamics of the definitive mouse placenta assessed by stereology. Biol. Reprod. 70, 1806–1813 (2004).
    Article CAS PubMed Google Scholar
  26. Angiolini, E. et al. Developmental adaptations to increased fetal nutrient demand in mouse genetic models of Igf2-mediated overgrowth. FASEB J. 25, 1737–1745 (2011).
    Article CAS PubMed Google Scholar
  27. Esquiliano, D. R., Guo, W., Liang, L., Dikkes, P. & Lopez, M. F. Placental glycogen stores are increased in mice with H19 null mutations but not in those with insulin or IGF type 1 receptor mutations. Placenta 30, 693–699 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  28. Leighton, P. A., Ingram, R. S., Eggenschwiler, J., Efstratiadis, A. & Tilghman, S. M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375, 34–39 (1995).
    Article CAS PubMed Google Scholar
  29. Thorvaldsen, J. L., Duran, K. L. & Bartolomei, M. S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12, 3693–3702 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  30. Ripoche, M. A., Kress, C., Poirier, F. & Dandolo, L. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev. 11, 1596–1604 (1997).
    Article CAS PubMed Google Scholar
  31. Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J. & Efstratiadis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59–72 (1993).
    CAS PubMed Google Scholar
  32. Baker, J., Liu, J. P., Robertson, E. J. & Efstratiadis, A. role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73–82 (1993).
    Article CAS PubMed Google Scholar
  33. Jeyaraj, S. C., Dakhlallah, D., Hill, S. R. & Lee, B.S. Expression and distribution of HuR during ATP depletion and recovery in proximal tubule cells. Am. J. Physiol. Renal. Physiol. 291, F1255–F1263 (2006).
    Article CAS PubMed Google Scholar
  34. Kim, H. H., Abdelmohsen, K. & Gorospe, M. Regulation of HuR by DNA damage response kinases. J. Nucleic Acids 2010 (2010).
  35. Pan, Y. X., Chen, H. & Kilberg, M. S. Interaction of RNA-binding proteins HuR and AUF1 with the human ATF3 mRNA 3’-untranslated region regulates its amino acid limitation-induced stabilization. J. Biol. Chem. 280, 34609–34616 (2005).
    Article CAS PubMed Google Scholar
  36. Wang, W. et al. HuR regulates p21 mRNA stabilization by UV light. Mol. Cell. Biol. 20, 760–769 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  37. Blaxall, B. C. et al. Differential expression and localization of the mRNA binding proteins, AU-rich element mRNA binding protein (AUF1) and Hu antigen R (HuR), in neoplastic lung tissue. Mol. Carcinog. 28, 76–83 (2000).
    Article CAS PubMed Google Scholar
  38. Lebedeva, S. et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell 43, 340–352 (2011).
    Article CAS PubMed Google Scholar
  39. Reddy, S. D., Ohshiro, K., Rayala, S. K. & Kumar, R. MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res. 68, 8195–8200 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  40. Saydam, O. et al. miRNA-7 attenuation in Schwannoma tumors stimulates growth by upregulating three oncogenic signaling pathways. Cancer Res. 71, 852–861 (2011).
    Article CAS PubMed Google Scholar
  41. Jiang, L. et al. MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem. J. 432, 199–205 (2010).
    Article CAS PubMed Google Scholar
  42. Lim, D. H. & Maher, E. R. Genomic imprinting syndromes and cancer. Adv. Genet. 70, 145–175 (2010).
    Article CAS PubMed Google Scholar
  43. Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998).
    Article CAS PubMed Google Scholar
  44. Ficz, G. et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398–402 (2011).
    Article CAS PubMed Google Scholar
  45. Caputi, M., Mayeda, A., Krainer, A. R. & Zahler, A. M. hnRNP A/B proteins are required for inhibition of HIV-1 pre-mRNA splicing. EMBO J. 18, 4060–4067 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  46. Baroni, T. E., Chittur, S. V., George, A. D. & Tenenbaum, S. A. Advances in RIP-chip analysis: RNA-binding protein immunoprecipitation-microarray profiling. Methods Mol. Biol. 419, 93–108 (2008).
    Article CAS PubMed Google Scholar

Download references