The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r (original) (raw)
References
Brannan, C. I., Dees, E. C., Ingram, R. S. & Tilghman, S. M. The product of the H19 gene may function as an RNA. Mol. Cell. Biol.10, 28–36 (1990). ArticleCASPubMedPubMed Central Google Scholar
Seidl, C. I., Stricker, S. H. & Barlow, D. P. The imprinted Air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export. EMBO. J.25, 3565–3575 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gabory, A., Jammes, H. & Dandolo, L. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays32, 473–480 (2010). ArticleCASPubMed Google Scholar
Hao, Y., Crenshaw, T., Moulton, T., Newcomb, E. & Tycko, B. Tumour-suppressor activity of H19 RNA. Nature365, 764–767 (1993). ArticleCASPubMed Google Scholar
Smits, G. et al. Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians. Nat. Genet.40, 971–976 (2008). ArticleCASPubMed Google Scholar
Gabory, A. et al. H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development136, 3413–3421 (2009). ArticleCASPubMed Google Scholar
Wilusz, J. E., Sunwoo, H. & Spector, D. L. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev.23, 1494–1504 (2009). ArticleCASPubMedPubMed Central Google Scholar
Huntzinger, E. & Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet.12, 99–110 (2011). CASPubMed Google Scholar
Dudek, K. A., Lafont, J. E., Martinez-Sanchez, A. & Murphy, C. L. Type II collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes. J. Biol. Chem.285, 24381–24387 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chiang, H. R. et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev.24, 992–1009 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yang, J. H., Shao, P., Zhou, H., Chen, Y. Q. & Qu, L. H. deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Res.38, D123-D130 (2010). Google Scholar
Knox, K. & Baker, J. C. Genomic evolution of the placenta using co-option and duplication and divergence. Genome Res.18, 695–705 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zhao, Z., Chang, F. C. & Furneaux, H. M. The identification of an endonuclease that cleaves within an HuR binding site in mRNA. Nucleic Acids Res.28, 2695–2701 (2000). ArticleCASPubMedPubMed Central Google Scholar
Katsanou, V. et al. The RNA-binding protein Elavl1/HuR is essential for placental branching morphogenesis and embryonic development. Mol. Cell. Biol.29, 2762–2776 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol.10, 126–139 (2009). ArticleCASPubMed Google Scholar
Runge, S. et al. H19 RNA binds four molecules of insulin-like growth factor II mRNA-binding protein. J. Biol. Chem.275, 29562–29569 (2000). ArticleCASPubMed Google Scholar
Mallanna, S. K. et al. Proteomic analysis of Sox2-associated proteins during early stages of mouse embryonic stem cell differentiation identifies Sox21 as a novel regulator of stem cell fate. Stem Cells28, 1715–1727 (2010). ArticleCASPubMedPubMed Central Google Scholar
Coan, P. M., Ferguson-Smith, A. C. & Burton, G. J. Developmental dynamics of the definitive mouse placenta assessed by stereology. Biol. Reprod.70, 1806–1813 (2004). ArticleCASPubMed Google Scholar
Angiolini, E. et al. Developmental adaptations to increased fetal nutrient demand in mouse genetic models of Igf2-mediated overgrowth. FASEB J.25, 1737–1745 (2011). ArticleCASPubMed Google Scholar
Esquiliano, D. R., Guo, W., Liang, L., Dikkes, P. & Lopez, M. F. Placental glycogen stores are increased in mice with H19 null mutations but not in those with insulin or IGF type 1 receptor mutations. Placenta30, 693–699 (2009). ArticleCASPubMedPubMed Central Google Scholar
Leighton, P. A., Ingram, R. S., Eggenschwiler, J., Efstratiadis, A. & Tilghman, S. M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature375, 34–39 (1995). ArticleCASPubMed Google Scholar
Thorvaldsen, J. L., Duran, K. L. & Bartolomei, M. S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev.12, 3693–3702 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ripoche, M. A., Kress, C., Poirier, F. & Dandolo, L. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev.11, 1596–1604 (1997). ArticleCASPubMed Google Scholar
Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J. & Efstratiadis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell75, 59–72 (1993). CASPubMed Google Scholar
Baker, J., Liu, J. P., Robertson, E. J. & Efstratiadis, A. role of insulin-like growth factors in embryonic and postnatal growth. Cell75, 73–82 (1993). ArticleCASPubMed Google Scholar
Jeyaraj, S. C., Dakhlallah, D., Hill, S. R. & Lee, B.S. Expression and distribution of HuR during ATP depletion and recovery in proximal tubule cells. Am. J. Physiol. Renal. Physiol.291, F1255–F1263 (2006). ArticleCASPubMed Google Scholar
Kim, H. H., Abdelmohsen, K. & Gorospe, M. Regulation of HuR by DNA damage response kinases. J. Nucleic Acids2010 (2010).
Pan, Y. X., Chen, H. & Kilberg, M. S. Interaction of RNA-binding proteins HuR and AUF1 with the human ATF3 mRNA 3’-untranslated region regulates its amino acid limitation-induced stabilization. J. Biol. Chem.280, 34609–34616 (2005). ArticleCASPubMed Google Scholar
Blaxall, B. C. et al. Differential expression and localization of the mRNA binding proteins, AU-rich element mRNA binding protein (AUF1) and Hu antigen R (HuR), in neoplastic lung tissue. Mol. Carcinog.28, 76–83 (2000). ArticleCASPubMed Google Scholar
Lebedeva, S. et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell43, 340–352 (2011). ArticleCASPubMed Google Scholar
Reddy, S. D., Ohshiro, K., Rayala, S. K. & Kumar, R. MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res.68, 8195–8200 (2008). ArticleCASPubMedPubMed Central Google Scholar
Saydam, O. et al. miRNA-7 attenuation in Schwannoma tumors stimulates growth by upregulating three oncogenic signaling pathways. Cancer Res.71, 852–861 (2011). ArticleCASPubMed Google Scholar
Jiang, L. et al. MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem. J.432, 199–205 (2010). ArticleCASPubMed Google Scholar
Lim, D. H. & Maher, E. R. Genomic imprinting syndromes and cancer. Adv. Genet.70, 145–175 (2010). ArticleCASPubMed Google Scholar
Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science282, 2072–2075 (1998). ArticleCASPubMed Google Scholar
Ficz, G. et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature473, 398–402 (2011). ArticleCASPubMed Google Scholar
Caputi, M., Mayeda, A., Krainer, A. R. & Zahler, A. M. hnRNP A/B proteins are required for inhibition of HIV-1 pre-mRNA splicing. EMBO J.18, 4060–4067 (1999). ArticleCASPubMedPubMed Central Google Scholar
Baroni, T. E., Chittur, S. V., George, A. D. & Tenenbaum, S. A. Advances in RIP-chip analysis: RNA-binding protein immunoprecipitation-microarray profiling. Methods Mol. Biol.419, 93–108 (2008). ArticleCASPubMed Google Scholar