Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration (original) (raw)

References

  1. Slack, J. M., Lin, G. & Chen, Y. The Xenopus tadpole: a new model for regeneration research. Cell Mol. Life Sci. 65, 54–63 (2008).
    Article CAS Google Scholar
  2. Love, N. R. et al. Genome-wide analysis of gene expression during Xenopus tropicalis tadpole tail regeneration. BMC Dev. Biol. 11, 70 (2011).
    Article CAS Google Scholar
  3. Lin, G. & Slack, J. M. Requirement for Wnt and FGF signaling in Xenopus tadpole tail regeneration. Dev. Biol. 316, 323–335 (2008).
    Article CAS Google Scholar
  4. Sugiura, T., Tazaki, A., Ueno, N., Watanabe, K. & Mochii, M. Xenopus Wnt-5a induces an ectopic larval tail at injured site, suggesting a crucial role for noncanonical Wnt signal in tail regeneration. Mech. Dev. 126, 56–67 (2009).
    Article CAS Google Scholar
  5. Beck, C. W., Christen, B. & Slack, J. M. Molecular pathways needed forregeneration of spinal cord and muscle in a vertebrate. Dev. Cell 5, 429–439 (2003).
    Article CAS Google Scholar
  6. Ho, D. M. & Whitman, M. TGF-β signaling is required for multiple processes during Xenopus tail regeneration. Dev. Biol. 315, 203–216 (2008).
    Article CAS Google Scholar
  7. Chamorro, M. N. et al. FGF-20 and DKK1 are transcriptional targets of β-catenin and FGF-20 is implicated in cancer and development. EMBO J. 24, 73–84 (2005).
    Article CAS Google Scholar
  8. Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000).
    Article CAS Google Scholar
  9. Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nature Rev. Immunol. 4, 181–189 (2004).
    Article CAS Google Scholar
  10. Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286 (2006).
    Article CAS Google Scholar
  11. Niethammer, P., Grabher, C., Look, A. T. & Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999 (2009).
    Article CAS Google Scholar
  12. Yoo, S. K., Starnes, T. W., Deng, Q. & Huttenlocher, A. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480, 109–112 (2011).
    Article CAS Google Scholar
  13. Love, N. R. et al. pTransgenesis: a cross-species, modular transgenesis resource. Development 138, 5451–5458 (2011).
    Article CAS Google Scholar
  14. Owusu-Ansah, E., Yavari, A., Mandal, S. & Banerjee, U. Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat. Genet. 40, 356–361 (2008).
    Article CAS Google Scholar
  15. Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).
    Article CAS Google Scholar
  16. West, A. P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011).
    Article CAS Google Scholar
  17. Costa, R. M., Soto, X., Chen, Y., Zorn, A. M. & Amaya, E. Spib is required for primitive myeloid development in Xenopus. Blood 112, 2287–2296 (2008).
    Article CAS Google Scholar
  18. O’Donnell, B. V., Tew, D. G., Jones, O. T. & England, P. J. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem. J. 290, 41–49 (1993).
    Article Google Scholar
  19. Kahles, T. & Brandes, R. P. NADPH oxidases as therapeutic targets in ischemic stroke. Cell Mol. Life Sci. 69, 2345–2363 (2012).
    Article CAS Google Scholar
  20. Stefanska, J. & Pawliczak, R. Apocynin: molecular aptitudes. Mediators Inflamm. 2008, 106507 (2008).
    Article CAS Google Scholar
  21. Wind, S. et al. Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. Br. J. Pharmacol. 161, 885–898 (2010).
    Article CAS Google Scholar
  22. Otomo, E. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc. Dis. 15, 222–229 (2003).
    Article Google Scholar
  23. Yoneyama, M., Kawada, K., Gotoh, Y., Shiba, T. & Ogita, K. Endogenous reactive oxygen species are essential for proliferation of neural stem/progenitor cells. Neurochem. Int. 56, 740–746 (2010).
    Article CAS Google Scholar
  24. Ambasta, R. K. et al. Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J. Biol. Chem. 279, 45935–45941 (2004).
    Article CAS Google Scholar
  25. Le Belle, J. E. et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem. Cell 8, 59–71 (2011).
    Article CAS Google Scholar
  26. Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K. & Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296–299 (1995).
    Article CAS Google Scholar
  27. Yanes, O. et al. Metabolic oxidation regulates embryonic stem cell differentiation. Nat. Chem. Biol. 6, 411–417 (2010).
    Article CAS Google Scholar
  28. Dickinson, B. C., Peltier, J., Stone, D., Schaffer, D. V. & Chang, C. J. Nox2 redox signaling maintains essential cell populations in the brain. Nat. Chem. Biol. 7, 106–112 (2011).
    Article CAS Google Scholar
  29. Hendzel, M. J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360 (1997).
    Article CAS Google Scholar
  30. Nutt, S. L., Bronchain, O. J., Hartley, K. O. & Amaya, E. Comparison of morpholino based translational inhibition during the development of Xenopus laevis and Xenopus tropicalis. Genesis 30, 110–113 (2001).
    Article CAS Google Scholar
  31. Whitehead, G. G., Makino, S., Lien, C. L. & Keating, M. T. fgf20 is essential for initiating zebrafish fin regeneration. Science 310, 1957–1960 (2005).
    Article CAS Google Scholar
  32. Lee, Y., Grill, S., Sanchez, A., Murphy-Ryan, M. & Poss, K. D. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development 132, 5173–5183 (2005).
    Article CAS Google Scholar
  33. Stoick-Cooper, C. L., Moon, R. T. & Weidinger, G. Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev. 21, 1292–1315 (2007).
    Article CAS Google Scholar
  34. Denayer, T., Tran, H. T. & Vleminckx, K. Transgenic reporter tools tracing endogenous canonical Wnt signaling in Xenopus. Methods Mol. Biol. 469, 381–400 (2008).
    Article CAS Google Scholar
  35. Funato, Y., Michiue, T., Asashima, M. & Miki, H. The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-β-catenin signalling through dishevelled. Nat. Cell Biol. 8, 501–508 (2006).
    Article CAS Google Scholar
  36. Galliot, B. & Chera, S. The Hydra model: disclosing an apoptosis-driven generator of Wnt-based regeneration. Trends Cell Biol. 20, 514–523 (2010).
    Article CAS Google Scholar
  37. Whyte, J. L., Smith, A. A. & Helms, J. A. Wnt signaling and injury repair. Cold Spring Harb. Perspect. Biol. 4, a008078 (2012).
    Article Google Scholar
  38. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis (Garland Publishing, 1994).
    Google Scholar
  39. Kroll, K. L. & Amaya, E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173–3183 (1996).
    CAS PubMed Google Scholar
  40. Turner, D. L. & Weintraub, H. Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev. 8, 1434–1447 (1994).
    Article CAS Google Scholar
  41. Chen, Y. et al. C/EBPα initiates primitive myelopoiesis in pluripotent embryonic cells. Blood 114, 40–48 (2009).
    Article CAS Google Scholar
  42. Lea, R., Papalopulu, N., Amaya, E. & Dorey, K. Temporal and spatial expression of FGF ligands and receptors during Xenopus development. Dev. Dyn. 238, 1467–1479 (2009).
    Article CAS Google Scholar

Download references