Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration (original) (raw)
References
Slack, J. M., Lin, G. & Chen, Y. The Xenopus tadpole: a new model for regeneration research. Cell Mol. Life Sci.65, 54–63 (2008). ArticleCAS Google Scholar
Love, N. R. et al. Genome-wide analysis of gene expression during Xenopus tropicalis tadpole tail regeneration. BMC Dev. Biol.11, 70 (2011). ArticleCAS Google Scholar
Lin, G. & Slack, J. M. Requirement for Wnt and FGF signaling in Xenopus tadpole tail regeneration. Dev. Biol.316, 323–335 (2008). ArticleCAS Google Scholar
Sugiura, T., Tazaki, A., Ueno, N., Watanabe, K. & Mochii, M. Xenopus Wnt-5a induces an ectopic larval tail at injured site, suggesting a crucial role for noncanonical Wnt signal in tail regeneration. Mech. Dev.126, 56–67 (2009). ArticleCAS Google Scholar
Beck, C. W., Christen, B. & Slack, J. M. Molecular pathways needed forregeneration of spinal cord and muscle in a vertebrate. Dev. Cell5, 429–439 (2003). ArticleCAS Google Scholar
Ho, D. M. & Whitman, M. TGF-β signaling is required for multiple processes during Xenopus tail regeneration. Dev. Biol.315, 203–216 (2008). ArticleCAS Google Scholar
Chamorro, M. N. et al. FGF-20 and DKK1 are transcriptional targets of β-catenin and FGF-20 is implicated in cancer and development. EMBO J.24, 73–84 (2005). ArticleCAS Google Scholar
Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature408, 239–247 (2000). ArticleCAS Google Scholar
Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nature Rev. Immunol.4, 181–189 (2004). ArticleCAS Google Scholar
Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods3, 281–286 (2006). ArticleCAS Google Scholar
Niethammer, P., Grabher, C., Look, A. T. & Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature459, 996–999 (2009). ArticleCAS Google Scholar
Yoo, S. K., Starnes, T. W., Deng, Q. & Huttenlocher, A. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature480, 109–112 (2011). ArticleCAS Google Scholar
Love, N. R. et al. pTransgenesis: a cross-species, modular transgenesis resource. Development138, 5451–5458 (2011). ArticleCAS Google Scholar
Owusu-Ansah, E., Yavari, A., Mandal, S. & Banerjee, U. Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat. Genet.40, 356–361 (2008). ArticleCAS Google Scholar
Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature394, 192–195 (1998). ArticleCAS Google Scholar
West, A. P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature472, 476–480 (2011). ArticleCAS Google Scholar
Costa, R. M., Soto, X., Chen, Y., Zorn, A. M. & Amaya, E. Spib is required for primitive myeloid development in Xenopus. Blood112, 2287–2296 (2008). ArticleCAS Google Scholar
O’Donnell, B. V., Tew, D. G., Jones, O. T. & England, P. J. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem. J.290, 41–49 (1993). Article Google Scholar
Kahles, T. & Brandes, R. P. NADPH oxidases as therapeutic targets in ischemic stroke. Cell Mol. Life Sci.69, 2345–2363 (2012). ArticleCAS Google Scholar
Stefanska, J. & Pawliczak, R. Apocynin: molecular aptitudes. Mediators Inflamm.2008, 106507 (2008). ArticleCAS Google Scholar
Wind, S. et al. Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. Br. J. Pharmacol.161, 885–898 (2010). ArticleCAS Google Scholar
Otomo, E. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc. Dis.15, 222–229 (2003). Article Google Scholar
Yoneyama, M., Kawada, K., Gotoh, Y., Shiba, T. & Ogita, K. Endogenous reactive oxygen species are essential for proliferation of neural stem/progenitor cells. Neurochem. Int.56, 740–746 (2010). ArticleCAS Google Scholar
Ambasta, R. K. et al. Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J. Biol. Chem.279, 45935–45941 (2004). ArticleCAS Google Scholar
Le Belle, J. E. et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem. Cell8, 59–71 (2011). ArticleCAS Google Scholar
Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K. & Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science270, 296–299 (1995). ArticleCAS Google Scholar
Yanes, O. et al. Metabolic oxidation regulates embryonic stem cell differentiation. Nat. Chem. Biol.6, 411–417 (2010). ArticleCAS Google Scholar
Dickinson, B. C., Peltier, J., Stone, D., Schaffer, D. V. & Chang, C. J. Nox2 redox signaling maintains essential cell populations in the brain. Nat. Chem. Biol.7, 106–112 (2011). ArticleCAS Google Scholar
Hendzel, M. J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma106, 348–360 (1997). ArticleCAS Google Scholar
Nutt, S. L., Bronchain, O. J., Hartley, K. O. & Amaya, E. Comparison of morpholino based translational inhibition during the development of Xenopus laevis and Xenopus tropicalis. Genesis30, 110–113 (2001). ArticleCAS Google Scholar
Whitehead, G. G., Makino, S., Lien, C. L. & Keating, M. T. fgf20 is essential for initiating zebrafish fin regeneration. Science310, 1957–1960 (2005). ArticleCAS Google Scholar
Lee, Y., Grill, S., Sanchez, A., Murphy-Ryan, M. & Poss, K. D. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development132, 5173–5183 (2005). ArticleCAS Google Scholar
Stoick-Cooper, C. L., Moon, R. T. & Weidinger, G. Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev.21, 1292–1315 (2007). ArticleCAS Google Scholar
Denayer, T., Tran, H. T. & Vleminckx, K. Transgenic reporter tools tracing endogenous canonical Wnt signaling in Xenopus. Methods Mol. Biol.469, 381–400 (2008). ArticleCAS Google Scholar
Funato, Y., Michiue, T., Asashima, M. & Miki, H. The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-β-catenin signalling through dishevelled. Nat. Cell Biol.8, 501–508 (2006). ArticleCAS Google Scholar
Galliot, B. & Chera, S. The Hydra model: disclosing an apoptosis-driven generator of Wnt-based regeneration. Trends Cell Biol.20, 514–523 (2010). ArticleCAS Google Scholar
Whyte, J. L., Smith, A. A. & Helms, J. A. Wnt signaling and injury repair. Cold Spring Harb. Perspect. Biol.4, a008078 (2012). Article Google Scholar
Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis (Garland Publishing, 1994). Google Scholar
Kroll, K. L. & Amaya, E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development122, 3173–3183 (1996). CASPubMed Google Scholar
Turner, D. L. & Weintraub, H. Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev.8, 1434–1447 (1994). ArticleCAS Google Scholar
Chen, Y. et al. C/EBPα initiates primitive myelopoiesis in pluripotent embryonic cells. Blood114, 40–48 (2009). ArticleCAS Google Scholar
Lea, R., Papalopulu, N., Amaya, E. & Dorey, K. Temporal and spatial expression of FGF ligands and receptors during Xenopus development. Dev. Dyn.238, 1467–1479 (2009). ArticleCAS Google Scholar