Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment (original) (raw)
Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell132, 631–644 (2008). ArticleCAS Google Scholar
Wang, L. D. & Wagers, A. J. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat. Rev. Mol. Cell Biol.12, 643–655 (2011). ArticleCAS Google Scholar
Adams, G. B. & Scadden, D. T. The hematopoietic stem cell in its place. Nat. Immunol.7, 333–337 (2006). ArticleCAS Google Scholar
Wilson, A. et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev.18, 2747–2763 (2004). ArticleCAS Google Scholar
Kiel, M. J. & Morrison, S. J. Uncertainty in the niches that maintain haematopoietic stem cells. Nat. Rev. Immunol.8, 290–301 (2008). ArticleCAS Google Scholar
Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature425, 836–841 (2003). ArticleCAS Google Scholar
Xie, Y. et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature457, 97–101 (2009). ArticleCAS Google Scholar
Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell121, 1109–1121 (2005). ArticleCAS Google Scholar
Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signalling in bone marrow stromal cell niches. Immunity25, 977–988 (2006). ArticleCAS Google Scholar
Mendez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature466, 829–834 (2010). ArticleCAS Google Scholar
Omatsu, Y. et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity33, 387–399 (2010). ArticleCAS Google Scholar
Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature481, 457–462 (2012). ArticleCAS Google Scholar
Parmar, K., Mauch, P., Vergilio, J. A., Sackstein, R. & Down, J. D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl Acad. Sci. USA104, 5431–5436 (2007). ArticleCAS Google Scholar
Takubo, K. et al. Regulation of the HIF- 1α level is essential for hematopoietic stem cells. Cell Stem Cell7, 391–402 (2010). ArticleCAS Google Scholar
Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell7, 380–390 (2010). ArticleCAS Google Scholar
Krohn, K. A., Link, J. M. & Mason, R. P. Molecular imaging of hypoxia. J. Nucl. Med.49 (Suppl 2), 129S–148S (2008). ArticleCAS Google Scholar
Brahimi-Horn, M. C. & Pouyssegur, J. Oxygen, a source of life and stress. FEBS Lett.581, 3582–3591 (2007). ArticleCAS Google Scholar
Eliasson, P. & Jonsson, J. I. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J. Cell Physiol.222, 17–22 (2010). ArticleCAS Google Scholar
Winkler, I. G. et al. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood116, 375–385 (2010). ArticleCAS Google Scholar
Mohyeldin, A., Garzon-Muvdi, T. & Quinones-Hinojosa, A. Oxygen in stem cellbiology: a critical component of the stem cell niche. Cell Stem Cell7, 150–161 (2010). ArticleCAS Google Scholar
Suda, T., Takubo, K. & Semenza, G. L. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell9, 298–310 (2011). ArticleCAS Google Scholar
Harnett, M. M. Laser scanning cytometry: understanding the immune system in situ. Nat. Rev. Immunol.7, 897–904 (2007). ArticleCAS Google Scholar
Butler, J. M. et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell6, 251–264 (2010). ArticleCAS Google Scholar
Hooper, A. T. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell4, 263–274 (2009). ArticleCAS Google Scholar
Yang, L. et al. Identification of Lin(-)Sca1(+)kit(+)CD34(+)Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood105, 2717–2723 (2005). ArticleCAS Google Scholar
Pereira, J. P., An, J., Xu, Y., Huang, Y. & Cyster, J. G. Cannabinoid receptor 2 mediates the retention of immature B cells in bone marrow sinusoids. Nat. Immunol.10, 403–411 (2009). ArticleCAS Google Scholar
Kopp, H. G., Avecilla, S. T., Hooper, A. T. & Rafii, S. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda)20, 349–356 (2005). CAS Google Scholar
Kopp, H. G., Hooper, A. T., Avecilla, S. T. & Rafii, S. Functionalheterogeneity of the bone marrow vascular niche. Ann. NY Acad. Sci.1176, 47–54 (2009). ArticleCAS Google Scholar
Li, X. M., Hu, Z., Jorgenson, M. L. & Slayton, W. B. High levels of acetylated low-density lipoprotein uptake and low tyrosine kinase with immunoglobulin and epidermal growth factor homology domains-2 (Tie2) promoter activity distinguish sinusoids from other vessel types in murine bone marrow. Circulation120, 1910–1918 (2009). ArticleCAS Google Scholar
Kimura, Y. et al. c-Kit-mediated functional positioning of stem cells to their niches is essential for maintenance and regeneration of adult hematopoiesis. PLoS One6, e26918 (2011). ArticleCAS Google Scholar
Yamazaki, S. et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell147, 1146–1158. ArticleCAS Google Scholar
Kubota, Y., Takubo, K. & Suda, T. Bone marrow long label-retaining cellsreside in the sinusoidal hypoxic niche. Biochem. Biophys. Res. Commun.366, 335–339 (2008). ArticleCAS Google Scholar
Jiang, B. H., Semenza, G. L., Bauer, C. & Marti, H. H. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol.271, C1172–C1180 (1996). ArticleCAS Google Scholar
Pedersen, M. et al. Stem cell factor induces HIF- 1α at normoxia in hematopoietic cells. Biochem. Biophys. Res. Commun.377, 98–103 (2008). ArticleCAS Google Scholar
Kirito, K., Fox, N., Komatsu, N. & Kaushansky, K. Thrombopoietin enhances expression of vascular endothelial growth factor (VEGF) in primitive hematopoietic cells through induction of HIF- 1α. Blood105, 4258–4263 (2005). ArticleCAS Google Scholar
Piccoli, C. et al. The hypoxia-inducible factor is stabilized in circulatinghematopoietic stem cells under normoxic conditions. FEBS Lett.581, 3111–3119 (2007). ArticleCAS Google Scholar
Eliasson, P. et al. Hypoxia mediates low cell-cycle activity and increases the proportion of long-term-reconstituting hematopoietic stem cells during in vitro culture. Exp. Hematol.38, 301–302 (2010). ArticleCAS Google Scholar
Guitart, A. V., Hammoud, M., Dello Sbarba, P., Ivanovic, Z. & Praloran, V. Slow-cycling/quiescence balance of hematopoietic stem cells is related to physiological gradient of oxygen. Exp. Hematol.38, 847–851 (2010). ArticleCAS Google Scholar
Keith, B. & Simon, M. C. Hypoxia-inducible factors, stem cells, and cancer. Cell129, 465–472 (2007). ArticleCAS Google Scholar
Lo Celso, C. et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature457, 92–96 (2009). ArticleCAS Google Scholar
Pittman, R. N. Oxygen transport and exchange in the microcirculation. Microcirculation12, 59–70 (2005). ArticleCAS Google Scholar
Wang, L. et al. Identification of a clonally expanding haematopoietic compartment in bone marrow. EMBO J. 32, 219–230 (2013). Article Google Scholar