Dynamic niches in the origination and differentiation of haematopoietic stem cells (original) (raw)
Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells4, 7–25 (1978). This seminal paper was first to apply the concept of the niche to stem cell biology, postulating that loss of HSC association with the niche would result in differentiation. CASPubMed Google Scholar
Eliasson, P. & Jonsson, J. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J. Cell Physiol.222, 17–22 (2009). ArticleCAS Google Scholar
Eliasson, P. et al. Hypoxia mediates low cell-cycle activity and increases the proportion of long-term- reconstituting hematopoietic stem cells during in vitro culture. Exp. Hematol.38, 301–310 e2 (2010). ArticleCASPubMed Google Scholar
Kulkeaw, K., Ishitani, T., Kanemaru, T., Fucharoen, S. & Sugiyama, D. Cold exposure down-regulates zebrafish hematopoiesis. Biochem. Biophys. Res. Commun.394, 859–864 (2010). ArticleCASPubMed Google Scholar
Adamo, L. et al. Biomechanical forces promote embryonic haematopoiesis. Nature459, 1131–1135 (2009). Demonstrates that shear stress increasesRunx1expression and colony-forming potential in embryonic stem cells differentiatedin vitrointo HSCs, and in haematopoietic precursors in the AGM region of mouse embryos. ArticleCASPubMedPubMed Central Google Scholar
Guzmán, A. et al. Formation of micronucleated erythrocytes in mouse bone-marrow under conditions of hypothermia is not associated with stimulation of erythropoiesis. Mutat. Res.656, 8–13 (2008). ArticlePubMedCAS Google Scholar
Proulx, C., Dupuis, N., St-Amour, I., Boyer, L. & Lemieux, R. Increased megakaryopoiesis in cultures of CD34-enriched cord blood cells maintained at 39°C. Biotechnol. Bioeng.88, 675–680 (2004). ArticleCASPubMed Google Scholar
Xie, T. & Spradling, A. C. decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell94, 251–260 (1998). ArticleCASPubMed Google Scholar
Xie, T. & Spradling, A. C. A niche maintaining germ line stem cells in the Drosophila ovary. Science290, 328–330 (2000). ArticleCASPubMed Google Scholar
Kimble, J. E. & White, J. G. On the control of germ cell development in Caenorhabditis elegans. Dev. Biol.81, 208–219 (1981). ArticleCASPubMed Google Scholar
Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature425, 836–841 (2003). ArticleCASPubMed Google Scholar
Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science303, 359–363 (2004). ArticleCASPubMed Google Scholar
Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell121, 1109–1121 (2005). ArticleCASPubMed Google Scholar
Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature425, 841–846 (2003). ArticleCASPubMed Google Scholar
Gordon, M. D., Vetto, J., Meshul, C. K. & Schmidt, W. A. FNA of extraskeletal myxoid chondrosarcoma: cytomorphologic, EM, and X-ray microanalysis features. Diagn. Cytopathol.10, 352–356 (1994). ArticleCASPubMed Google Scholar
Wright, D. E., Wagers, A. J., Gulati, A. P., Johnson, F. L. & Weissman, I. L. Physiological migration of hematopoietic stem and progenitor cells. Science294, 1933–1936 (2001). ArticleCASPubMed Google Scholar
Dzierzak, E. & Speck, N. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nature Immunol.9, 129–136 (2008). ArticleCAS Google Scholar
Badillo, A. T. & Flake, A. W. The regulatory role of stromal microenvironments in fetal hematopoietic ontogeny. Stem Cell Rev.2, 241–246 (2006). ArticlePubMed Google Scholar
Ottersbach, K., Smith, A., Wood, A. & Gottgens, B. Ontogeny of haematopoiesis: recent advances and open questions. Br. J. Haematol.148, 343–355 (2010). ArticlePubMed Google Scholar
Weissman, I., Papaioannou, V. & Gardner, R. in Differentiation of Normal and Neoplastic Hematopoietic Cells (Cold Spring Harbor Laboratory, New York, 1978). Google Scholar
Samokhvalov, I. M., Samokhvalova, N. I. & Nishikawa, S.-I. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature446, 1056–1061 (2007). ArticleCASPubMed Google Scholar
Boisset, J.-C. et al. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature464, 116–120 (2010). ArticleCASPubMed Google Scholar
Eilken, H. M., Nishikawa, S.-I. & Schroeder, T. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature457, 896–900 (2009). ArticleCASPubMed Google Scholar
Cumano, A., Dieterlen-Lievre, F. & Godin, I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell86, 907–916 (1996). ArticleCASPubMed Google Scholar
Kalev-Zylinska, M. L. et al. Runx3 is required for hematopoietic development in zebrafish. Dev. Dyn.228, 323–336 (2003). ArticleCASPubMed Google Scholar
Kalev-Zylinska, M. L. et al. Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development129, 2015–2030 (2002). ArticleCASPubMed Google Scholar
Burns, C. E. et al. Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators. Exp. Hematol.30, 1381–1389 (2002). ArticleCASPubMed Google Scholar
Kissa, K. & Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature464, 112–115 (2010). ArticleCASPubMed Google Scholar
Rosselló, C. A. & Torres, M. Gene transfer by electroporation into hemogenic endothelium in the avian embryo. Dev. Dyn.239, 1748–1754 (2010). ArticlePubMedCAS Google Scholar
Bigas, A., Robert-Moreno, A. & Espinosa, L. The Notch pathway in the developing hematopoietic system. Int. J. Dev. Biol.54, 1175–1188 (2010). ArticleCASPubMed Google Scholar
Wolber, F. M. et al. Roles of spleen and liver in development of the murine hematopoietic system. Exp. Hematol.30, 1010–1019 (2002). ArticleCASPubMed Google Scholar
Askmyr, M., Sims, N. A., Martin, T. J. & Purton, L. E. What is the true nature of the osteoblastic hematopoietic stem cell niche? Trends Endocrinol. Metab.20, 303–309 (2009). ArticleCASPubMed Google Scholar
Kiel, M. J. & Morrison, S. J. Uncertainty in the niches that maintain haematopoietic stem cells. Nature Rev. Immunol.8, 290–301 (2008). ArticleCAS Google Scholar
Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell118, 149–161 (2004). ArticleCASPubMed Google Scholar
Nagasawa, T. et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature382, 635–638 (1996). ArticleCASPubMed Google Scholar
Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity25, 977–988 (2006). ArticleCASPubMed Google Scholar
Barker, J. E. Sl/Sld hematopoietic progenitors are deficient in situ. Exp. Hematol.22, 174–177 (1994). CASPubMed Google Scholar
Yoshihara, H. et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell1, 685–697 (2007). ArticleCASPubMed Google Scholar
Qian, H. et al. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell1, 671–684 (2007). ArticleCASPubMed Google Scholar
Weber, J. M. & Calvi, L. M. Notch signaling and the bone marrow hematopoietic stem cell niche. Bone46, 281–285 (2010). ArticleCASPubMed Google Scholar
Luis, T. C. & Staal, F. J. WNT proteins: environmental factors regulating HSC fate in the niche. Ann. N. Y. Acad. Sci.1176, 70–76 (2009). ArticleCASPubMed Google Scholar
Qian, H. et al. Distinct roles of integrins α6 and α4 in homing of fetal liver hematopoietic stem and progenitor cells. Blood110, 2399–2407 (2007). ArticleCASPubMed Google Scholar
Magnon, C. & Frenette, P. S. Hematopoietic stem cell trafficking. StemBook 14 Jul 2008 (doi:10.3824/stembook.1.8.1).
Bertrand, J. Y. et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature464, 108–111 (2010). References 22, 23, 28 and 45 use real-time imaging to demonstrate that HSCs arise from the aortic endothelium in the AGM. References 22 and 23 show this in mice, whereas references 28 and 45 examine zebrafish. ArticleCASPubMedPubMed Central Google Scholar
His, W. Lecithoblast und Angioblast der Wirbelthiere. Histogenetische studien. Abhandl. Math.-Phys. Classe Konigl. Sachs. Ges. Wiss.26, 171–328 (1900). Google Scholar
Murray, P. D. F. The development in vitro of the blood of the early chick embryo. Proc. R. Soc. Lond. B111, 497–521 (1932). ArticleCAS Google Scholar
Oostendorp, R. A. J. et al. Stromal cell lines from mouse aorta–gonads–mesonephros subregions are potent supporters of hematopoietic stem cell activity. Blood99, 1183–1189 (2002). ArticleCASPubMed Google Scholar
Mascarenhas, M. I., Parker, A., Dzierzak, E. & Ottersbach, K. Identification of novel regulators of hematopoietic stem cell development through refinement of stem cell localization and expression profiling. Blood114, 4645–4653 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yamazaki, S. et al. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. EMBO J.25, 3515–3523 (2006). ArticleCASPubMedPubMed Central Google Scholar
Esner, M. et al. Smooth muscle of the dorsal aorta shares a common clonal origin with skeletal muscle of the myotome. Development133, 737–749 (2006). ArticleCASPubMed Google Scholar
Gekas, C., Dieterlen-Lièvre, F., Orkin, S. H. & Mikkola, H. K. A. The placenta is a niche for hematopoietic stem cells. Dev. Cell8, 365–375 (2005). ArticleCASPubMed Google Scholar
Ottersbach, K. & Dzierzak, E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev. Cell8, 377–387 (2005). ArticleCASPubMed Google Scholar
Kumaravelu, P. et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development129, 4891–4899 (2002). ArticleCASPubMed Google Scholar
Ma, Q. et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl Acad. Sci. USA95, 9448–9453 (1998). ArticleCASPubMedPubMed Central Google Scholar
McGrath, K. E., Koniski, A. D., Maltby, K. M., McGann, J. K. & Palis, J. Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev. Biol.213, 442–456 (1999). ArticleCASPubMed Google Scholar
Christensen, J. L., Wright, D. E., Wagers, A. J. & Weissman, I. L. Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol.2, e75 (2004). ArticlePubMedPubMed Central Google Scholar
McCulloch, E. A., Siminovitch, L., Till, J. E., Russell, E. S. & Bernstein, S. E. The cellular basis of the genetically determined hemopoietic defect in anemic mice of genotype Sl/Sld. Blood26, 399–410 (1965). ArticleCASPubMed Google Scholar
Broxmeyer, H. E. et al. The kit receptor and its ligand, steel factor, as regulators of hemopoiesis. Cancer Cells3, 480–487 (1991). CASPubMed Google Scholar
Martin, M. A. & Bhatia, M. Analysis of the human fetal liver hematopoietic microenvironment. Stem Cells Dev.14, 493–504 (2005). ArticleCASPubMed Google Scholar
Krosl, J. et al. A mutant allele of the Swi/Snf member BAF250a determines the pool size of fetal liver hemopoietic stem cell populations. Blood116, 1678–1684 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chan, C. et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature457, 490–494 (2009). ArticleCASPubMed Google Scholar
Broxmeyer, H. E. et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med.201, 1307–1318 (2005). ArticleCASPubMedPubMed Central Google Scholar
Shiojiri, N. Development and differentiation of bile ducts in the mammalian liver. Microsc. Res. Tech.39, 328–335 (1997). ArticleCASPubMed Google Scholar
Ehninger, A. & Trumpp, A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J. Exp. Med.208, 421–428 (2011). ArticleCASPubMedPubMed Central Google Scholar
Arai, F. et al. Niche regulation of hematopoietic stem cells in the endosteum. Ann. N. Y. Acad. Sci.1176, 36–46 (2009). ArticleCASPubMed Google Scholar
Parmar, K., Mauch, P., Vergilio, J.-A., Sackstein, R. & Down, J. D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl Acad. Sci. USA104, 5431–5436 (2007). ArticleCASPubMedPubMed Central Google Scholar
Winkler, I. G. et al. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood116, 375–385 (2010). Makes the case that HSCs reside in a functionally hypoxic niche because HSCs that do not stain with Hoechst dye (and are therefore poorly-perfused) exhibit superior long-term reconstitution compared with HSCs that do take up Hoechst dye. ArticleCASPubMed Google Scholar
Bourke, V. et al. Spatial gradients of blood vessels and hematopoietic stem and progenitor cells within the marrow cavities of the human skeleton. Blood114, 4077–4080 (2009). ArticleCASPubMedPubMed Central Google Scholar
Boitano, A. E. et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science329, 1345–1348 (2010). Uses a high-throughput chemical screen to identify a small molecule antagonist of the aryl hydrocarbon receptor pathway that potently expands engraftable UCB HSCsex vivo. ArticleCASPubMedPubMed Central Google Scholar
Takubo, K. et al. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Stem Cell7, 391–402 (2010). CAS Google Scholar
Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Stem Cell7, 380–390 (2010). CAS Google Scholar
Takaku, T. et al. Hematopoiesis in 3 dimensions: human and murine bone marrow architecture visualized by confocal microscopy. Blood116, e41–e55 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kohler, A. et al. Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood114, 290–298 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Lo Celso, C. et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature457, 92–97 (2009). ArticleCASPubMed Google Scholar
Adams, G. B. et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature439, 599–603 (2006). ArticleCASPubMed Google Scholar
Lam, B. S., Cunningham, C. & Adams, G. B. Pharmacologic modulation of the calcium-sensing receptor enhances hematopoietic stem cell lodgment in the adult bone marrow. Blood117, 1167–1175 (2011). ArticleCASPubMedPubMed Central Google Scholar
Lymperi, S., Ersek, A., Ferraro, F., Dazzi, F. & Horwood, N. J. Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood117, 1540–1549 (2011). ArticleCASPubMed Google Scholar
Kollet, O. et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nature Med.12, 657–664 (2006). ArticleCASPubMed Google Scholar
North, T. E. et al. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity16, 661–672 (2002). ArticleCASPubMed Google Scholar
Keung, A. J., Healy, K. E., Kumar, S. & Schaffer, D. V. Biophysics and dynamics of natural and engineered stem cell microenvironments. Wiley Interdiscip. Rev. Syst. Biol. Med.2, 49–64 (2010). ArticleCASPubMed Google Scholar
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell126, 677–689 (2006). ArticleCASPubMed Google Scholar
Visnjic, D. et al. Conditional ablation of the osteoblast lineage in Col2.3Δtk transgenic mice. J. Bone Miner. Res.16, 2222–2231 (2001). ArticleCASPubMed Google Scholar
Visnjic, D. et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood103, 3258–3264 (2004). ArticleCASPubMed Google Scholar
Taichman, R. S., Reilly, M. J. & Emerson, S. G. Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood87, 518–524 (1996). ArticleCASPubMed Google Scholar
Nilsson, S. K. et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood106, 1232–1239 (2005). ArticleCASPubMed Google Scholar
Stier, S. et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med.201, 1781–1791 (2005). ArticleCASPubMedPubMed Central Google Scholar
Haug, J. S. et al. N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells. Cell Stem Cell2, 367–379 (2008). ArticleCASPubMed Google Scholar
Fleming, H. et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell2, 274–283 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hosokawa, K. et al. Cadherin-based adhesion is a potential target for niche manipulation to protect hematopoietic stem cells in adult bone marrow. Cell Stem Cell6, 194–198 (2010). ArticleCASPubMed Google Scholar
Hosokawa, K. et al. Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells. Blood116, 554–563 (2010). ArticleCASPubMed Google Scholar
Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell132, 598–611 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lapidot, T., Dar, A. & Kollet, O. How do stem cells find their way home? Blood106, 1901–1910 (2005). ArticleCASPubMed Google Scholar
Raaijmakers, M. H. G. P. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature464, 852–857 (2010). Demonstrates that ablation of miRNA processing machinery in osteoblasts can give rise to myelodysplasia and leukaemia. ArticleCASPubMedPubMed Central Google Scholar
Chitteti, B. R. et al. Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood115, 3239–3248 (2010). ArticleCASPubMedPubMed Central Google Scholar
Nakamura, Y. et al. Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells. Blood116, 1422–1432 (2010). ArticleCASPubMed Google Scholar
Jung, Y. et al. Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone38, 497–508 (2006). ArticleCASPubMed Google Scholar
Ponomaryov, T. et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J. Clin. Invest.106, 1331–1339 (2000). ArticleCASPubMedPubMed Central Google Scholar
Porter, R. L. & Calvi, L. M. Communications between bone cells and hematopoietic stem cells. Arch. Biochem. Biophys.473, 193–200 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lewandowski, D. et al. In vivo cellular imaging pinpoints the role of reactive oxygen species in the early steps of adult hematopoietic reconstitution. Blood115, 443–452 (2009). ArticlePubMedCAS Google Scholar
Xie, Y. et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature457, 97–101 (2009). References 74–76 and 103 use groundbreaking imaging technology to visualize HSCs in the niche in mice. The authors of references 74 and 103 image bonesex vivo, and the authors of references 75 and 76 image cells in the bonein vivo. ArticleCASPubMed Google Scholar
Méndez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature466, 829–834 (2010). Identifies NES+ MSCs as important niche cells, which are capable of maintaining HSC numbers and function. ArticlePubMedPubMed CentralCAS Google Scholar
Tzeng, Y.-S. et al. Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood117, 429–439 (2011). ArticleCASPubMed Google Scholar
Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell124, 407–421 (2006). ArticleCASPubMed Google Scholar
Wu, J., Scadden, D. & Kronenberg, H. Role of the osteoblast lineage in the bone marrow hematopoietic niches. J. Bone Miner. Res.24, 759–764 (2009). ArticlePubMedPubMed Central Google Scholar
Zhu, J. et al. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood109, 3706–3712 (2007). ArticleCASPubMed Google Scholar
Omatsu, Y. et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity33, 1–13 (2010). Identifies the CAR cell as an adipo-osteogenic precursor cell capable of serving an HSC niche function, maintaining HSC numbers and function. ArticleCAS Google Scholar
Spiegel, A. et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nature Immunol.8, 1123–1131 (2007). ArticleCAS Google Scholar
Spiegel, A., Kalinkovich, A., Shivtiel, S., Kollet, O. & Lapidot, T. Stem cell regulation via dynamic interactions of the nervous and immune systems with the microenvironment. Cell Stem Cell3, 484–492 (2008). ArticleCASPubMed Google Scholar
Butler, J. M. et al. Endothelial cells are essential for the self-renewal and repopulation of notch-dependent hematopoietic stem cells. Stem Cell6, 251–264 (2010). CAS Google Scholar
Kobayashi, H. et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nature Cell Biol.12, 1046–1056 (2010). ArticleCASPubMed Google Scholar
Hooper, A. T. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Stem Cell4, 263–274 (2009). CAS Google Scholar
Cao, J. J., Sun, L. & Gao, H. Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice. Ann. N. Y. Acad. Sci.1192, 292–297 (2010). ArticleCASPubMed Google Scholar
Rosen, C. J., Ackert-Bicknell, C., Rodriguez, J. P. & Pino, A. M. Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit. Rev. Eukaryot. Gene Expr.19, 109–124 (2009). ArticleCASPubMedPubMed Central Google Scholar
Halade, G. V., Rahman, M. M., Williams, P. J. & Fernandes, G. High fat diet-induced animal model of age-associated obesity and osteoporosis. J. Nutr. Biochem.21, 1162–1169 (2010). ArticleCASPubMedPubMed Central Google Scholar
Casamassima, F. et al. Hematopoietic bone marrow recovery after radiation therapy: MRI evaluation. Blood73, 1677–1681 (1989). ArticleCASPubMed Google Scholar
Bredella, M. A. et al. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring)19, 49–53 (2011). ArticleCAS Google Scholar
Naveiras, O. et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature460, 259–263 (2009). Indicates a negative influence of bone marrow adipocytes on HSC function. ArticleCASPubMedPubMed Central Google Scholar
Claycombe, K., King, L. E. & Fraker, P. J. A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc. Natl Acad. Sci. USA105, 2017–2021 (2008). ArticleCASPubMedPubMed Central Google Scholar
Pietramaggiori, G. et al. Improved cutaneous healing in diabetic mice exposed to healthy peripheral circulation. J. Invest. Dermatol.129, 2265–2274 (2009). ArticleCASPubMed Google Scholar
Belaid-Choucair, Z. et al. Human bone marrow adipocytes block granulopoiesis through neuropilin-1-induced granulocyte colony-stimulating factor inhibition. Stem Cells26, 1556–1564 (2008). ArticleCASPubMed Google Scholar
Lane, S. W. et al. The Apcmin mouse has altered hematopoietic stem cell function and provides a model for MPD/MDS. Blood115, 3489–3497 (2010). Demonstrates that expression of a hypomorphic allele of APC causes myelodysplastic/myeloproliferative disease (MDS/MPD) in an HSC-extrinsic fashion. ArticleCASPubMedPubMed Central Google Scholar
Walkley, C. et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor-γ deficiency. Cell129, 1097–1110 (2007). ArticleCASPubMedPubMed Central Google Scholar
Walkley, C. R., Shea, J. M., Sims, N. A., Purton, L. E. & Orkin, S. H. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell129, 1081–1095 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med.192, 1273–1280 (2000). ArticleCASPubMedPubMed Central Google Scholar
de Haan, G., Nijhof, W. & Van Zant, G. Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood89, 1543–1550 (1997). ArticleCASPubMed Google Scholar
Dykstra, B. & Haan, G. Hematopoietic stem cell aging and self-renewal. Cell Tissue Res.331, 91–101 (2008). ArticlePubMed Google Scholar
Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA102, 9194–9199 (2005). ArticleCASPubMedPubMed Central Google Scholar
Liang, Y., Van Zant, G. & Szilvassy, S. J. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood106, 1479–1487 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wagner, W., Horn, P., Bork, S. & Ho, A. D. Aging of hematopoietic stem cells is regulated by the stem cell niche. Exp. Gerontol.43, 974–980 (2008). ArticleCASPubMed Google Scholar
Chen, C., Liu, Y., Liu, Y. & Zheng, P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal.2, ra75 (2009). Shows that increased expression of mTOR in HSCs from old mice is responsible for the phenotypic and functional changes in haematopoiesis seen in ageing and that forced upregulation of mTOR in young HSCs makes them assume an 'aged' phenotype. PubMedPubMed Central Google Scholar
Wang, W. et al. Proteomic analysis of interstitial fluid in bone marrow identified that peroxiredoxin 2 regulates H2O2 level of bone marrow during aging. J. Proteome Res.9, 3812–3819 (2010). ArticleCASPubMed Google Scholar
Milyavsky, M. et al. A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Stem Cell7, 1–12 (2010). Google Scholar
Mohrin, M. et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell7, 174–185 (2010). ArticleCASPubMedPubMed Central Google Scholar
Stevens, S. K., Moore, S. G. & Kaplan, I. D. Early and late bone-marrow changes after irradiation: MR evaluation. Am. J. Roentgenol.154, 745–750 (1990). ArticleCAS Google Scholar
Dominici, M. et al. Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood114, 2333–2343 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lichtman, M. A. Obesity and the risk for a hematological malignancy: leukemia, lymphoma, or myeloma. Oncologist15, 1083–1101 (2010). ArticlePubMedPubMed Central Google Scholar
Busik, J. V. et al. Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J. Exp. Med.206, 2897–2906 (2009). ArticleCASPubMedPubMed Central Google Scholar
McNiece, I., Harrington, J., Turney, J., Kellner, J. & Shpall, E. J. Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. Cytotherapy6, 311–317 (2004). ArticleCASPubMed Google Scholar
Delaney, C. et al. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nature Med.16, 232–236 (2010). Demonstrates that UBC HSCs can be expandedex vivousing engineered Notch ligands and that expanded HSCs can successfully be used in clinical bone marrow transplantation. ArticleCASPubMed Google Scholar
Goessling, W. et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell136, 1136–1147 (2009). ArticleCASPubMedPubMed Central Google Scholar
North, T. E. & Goessling, W. NOTCHing an arrow at cord blood: translating stem cell knowledge into clinical practice. Stem Cell6, 186–187 (2010). ArticleCAS Google Scholar
Tesio, M. et al. Enhanced c-Met activity promotes G-CSF-induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood117, 419–428 (2011). ArticleCASPubMed Google Scholar