Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels (original) (raw)
Akhmanova, A. & Steinmetz, M. O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol.9, 309–322 (2008). ArticleCAS Google Scholar
Kinoshita, K., Arnal, I., Desai, A., Drechsel, D. N. & Hyman, A. A. Reconstitution of physiological microtubule dynamics using purified components. Science294, 1340–1343 (2001). ArticleCAS Google Scholar
Bieling, P. et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature450, 1100–1105 (2007). ArticleCAS Google Scholar
Srayko, M., Kaya, A., Stamford, J. & Hyman, A. A. Identification and characterization of factors required for microtubule growth and nucleation in the early C. elegans embryo. Dev. Cell9, 223–236 (2005). ArticleCAS Google Scholar
Komarova, Y. A. et al. Mammalian end binding proteins control persistent microtubule growth. J. Cell Biol.184, 691–706 (2009). ArticleCAS Google Scholar
Stepanova, T. et al. History-dependent catastrophes regulate axonal microtubule behaviour. Curr. Biol.20, 1023–1028 (2010). ArticleCAS Google Scholar
Bechstedt, S. & Brouhard, G. J. Doublecortin recognizes the 13-protofilamentmicrotubule cooperatively and tracks microtubule ends. Dev. Cell23, 181–192 (2012). ArticleCAS Google Scholar
Gard, D. L. & Kirschner, M. W. A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J. Cell Biol.105, 2203–2215 (1987). ArticleCAS Google Scholar
Brouhard, G. J. et al. XMAP215 Is a processive microtubule polymerase. Cell132, 79–88 (2008). ArticleCAS Google Scholar
Widlund, P. O. et al. XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region. Proc. Natl Acad. Sci. USA108, 2741–2746 (2011). ArticleCAS Google Scholar
Bieling, P. et al. CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites. J. Cell Biol.183, 1223–1233 (2008). ArticleCAS Google Scholar
Dixit, R. et al. Microtubule plus-end tracking by CLIP-170 requires EB1. Proc. Natl Acad. Sci. USA106, 492–497 (2009). ArticleCAS Google Scholar
Zanic, M., Stear, J. H., Hyman, A. A. & Howard, J. EB1 recognizes the nucleotide state of tubulin in the microtubule lattice. PLoS ONE4, e7585 (2009). Article Google Scholar
Niethammer, P. et al. Discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics. PLoS Biol.5, e29 (2007). Article Google Scholar
Vitre, B. et al. EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nat. Cell Biol.10, 415–421 (2008). ArticleCAS Google Scholar
Blake-Hodek, K. A., Cassimeris, L. & Huffaker, T. C. Regulation of microtubule dynamics by Bim1 and Bik1, the budding yeast members of the EB1 and CLIP-170 families of plus-end tracking proteins. Mol. Biol. Cell21, 2013–2023 (2010). ArticleCAS Google Scholar
Honnappa, S. et al. An EB1-binding motif acts as a microtubule tip localization signal. Cell138, 366–376 (2009). ArticleCAS Google Scholar
Kronja, I., Kruljac-Letunic, A., Caudron-Herger, M., Bieling, P. & Karsenti, E. XMAP215-EB1 interaction is required for proper spindle assembly and chromosome segregation in Xenopus egg extract. Mol. Biol. Cell20, 2684–2696 (2009). ArticleCAS Google Scholar
Gell, C. et al. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. Methods Cell Biol.95, 221–245 (2010). ArticleCAS Google Scholar
Manna, T., Honnappa, S., Steinmetz, M. O. & Wilson, L. Suppression of microtubule dynamic instability by the +TIP protein EB1 and its modulation by the CAP-Gly domain of p150glued. Biochemistry47, 779–786 (2008). ArticleCAS Google Scholar
Maurer, S. P., Fourniol, F. J., Bohner, G., Moores, C. A. & Surrey, T. EBs recognize a nucleotide-dependent structural cap at growing microtubule ends. Cell149, 371–382 (2012). ArticleCAS Google Scholar
van der Vaart, B. et al. SLAIN2 links microtubule plus end-tracking proteins and controls microtubule growth in interphase. J. Cell Biol.193, 1–27 (2011). Article Google Scholar
Li, W. et al. EB1 promotes microtubule dynamics by recruiting Sentin in Drosophila cells. J. Cell Biol.193, 973–983 (2011). ArticleCAS Google Scholar
Ayaz, P., Ye, X., Huddleston, P., Brautigam, C. A. & Rice, L. M. A TOG:-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase. Science337, 857–860 (2012). ArticleCAS Google Scholar
Georges, des, A. et al. Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice. Nat. Struct. Mol. Biol.15, 1102–1108 (2008). Article Google Scholar
Elie-Caille, C. et al. Straight GDP-tubulin protofilaments form in the presence of taxol. Curr. Biol.17, 1765–1770 (2007). ArticleCAS Google Scholar
Northrup, S. H. & Erickson, H. P. Kinetics of protein–protein association explained by Brownian dynamics computer simulation. Proc. Natl Acad. Sci. USA89, 3338–3342 (1992). ArticleCAS Google Scholar
Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, 2001). Google Scholar
Pollard, T. D. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J. Cell Biol.103, 2747–2754 (1986). ArticleCAS Google Scholar
Gardner, M. K. et al. Rapid microtubule self-assembly kinetics. Cell146, 582–592 (2011). ArticleCAS Google Scholar
Li, W. et al. Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and Sentin. J. Cell Biol.199, 849–862 (2012). ArticleCAS Google Scholar
Ranjith, P., Lacoste, D., Mallick, K. & Joanny, J.-F. Nonequilibrium self-assembly of a filament coupled to ATP/GTP hydrolysis. Biophys. J.96, 2146–2159 (2009). ArticleCAS Google Scholar
Mitchison, T. J. & Kirschner, M. W. Dynamic instability of microtubule growth. Nature312, 237–242 (1984). ArticleCAS Google Scholar
O’Brien, E. T., Voter, W. A. & Erickson, H. P. GTP hydrolysis during microtubule assembly. Biochemistry26, 4148–4156 (1987). Article Google Scholar
Walker, R. A. et al. Dynamic instability of individual microtubules analysed by video light microscopy: rate constants and transition frequencies. J. Cell Biol.107, 1437–1448 (1988). ArticleCAS Google Scholar
Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the alpha beta tubulin dimer by electron crystallography. Nature391, 199–203 (1998). ArticleCAS Google Scholar
Rice, L. M., Montabana, E. A. & Agard, D. A. The lattice as allosteric effector: structural studies of alphabeta- and gamma-tubulin clarify the role of GTP in microtubule assembly. Proc. Natl Acad. Sci. USA105, 5378–5383 (2008). ArticleCAS Google Scholar
Wang, H-W. & Nogales, E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature435, 911–915 (2005). ArticleCAS Google Scholar
Prota, A. E. et al. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science339, 587–590 (2013). ArticleCAS Google Scholar
Segel, I. H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady State Enzyme Systems (Wiley, 1975). Google Scholar