Cargo recognition and trafficking in selective autophagy (original) (raw)
Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol.27, 107–132 (2011). ArticleCASPubMed Google Scholar
Kirkin, V., McEwan, D. G., Novak, I. & Dikic, I. A role for ubiquitin in selective autophagy. Mol. Cell34, 259–269 (2009). ArticleCASPubMed Google Scholar
Kraft, C., Peter, M. & Hofmann, K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat. Cell Biol.12, 836–841 (2010). ArticleCASPubMed Google Scholar
Lamb, C. A., Yoshimori, T. & Tooze, S. A. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol.14, 759–774 (2013). ArticleCASPubMed Google Scholar
Thumm, M. et al. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett.349, 275–280 (1994). ArticleCASPubMed Google Scholar
Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett.333, 169–174 (1993). ArticleCASPubMed Google Scholar
Meijer, W. H., van der Klei, I. J., Veenhuis, M. & Kiel, J. A. ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy3, 106–116 (2007). ArticleCASPubMed Google Scholar
Budovskaya, Y. V., Stephan, J. S., Deminoff, S. J. & Herman, P. K. An evolutionary proteomics approach identifies substrates of the cAMP-dependent protein kinase. Proc. Natl Acad. Sci. USA102, 13933–13938 (2005). ArticleCASPubMedPubMed Central Google Scholar
Chang, Y. Y. & Neufeld, T. P. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol. Biol. Cell20, 2004–2014 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ganley, I. G. et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem.284, 12297–12305 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hoyer-Hansen, M. & Jaattela, M. AMP-activated protein kinase: a universal regulator of autophagy? Autophagy3, 381–383 (2007). ArticlePubMed Google Scholar
Samari, H. R. & Seglen, P. O. Inhibition of hepatocytic autophagy by adenosine, aminoimidazole-4-carboxamide riboside, and N6-mercaptopurine riboside. Evidence for involvement of amp-activated protein kinase. J. Biol. Chem.273, 23758–23763 (1998). ArticleCASPubMed Google Scholar
Russell, R. C. et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol.15, 741–750 (2013). ArticleCASPubMedPubMed Central Google Scholar
Krick, R., Tolstrup, J., Appelles, A., Henke, S. & Thumm, M. The relevance of the phosphatidylinositolphosphat-binding motif FRRGT of Atg18 and Atg21 for the Cvt pathway and autophagy. FEBS Lett.580, 4632–4638 (2006). ArticleCASPubMed Google Scholar
Taguchi-Atarashi, N. et al. Modulation of local PtdIns3P levels by the PI phosphatase MTMR3 regulates constitutive autophagy. Traffic11, 468–478 (2010). ArticleCASPubMed Google Scholar
Kundu, M. et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood112, 1493–1502 (2008). ArticleCASPubMedPubMed Central Google Scholar
Alers, S. et al. Atg13 and FIP200 act independently of Ulk1 and Ulk2 in autophagy induction. Autophagy7, 1423–1433 (2011). ArticleCASPubMed Google Scholar
Martinez, J. et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl Acad. Sci. USA108, 17396–17401 (2011). ArticlePubMedPubMed Central Google Scholar
Florey, O., Kim, S. E., Sandoval, C. P., Haynes, C. M. & Overholtzer, M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat. Cell Biol.13, 1335–1343 (2011). ArticleCASPubMedPubMed Central Google Scholar
Slobodkin, M. R. & Elazar, Z. The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem.55, 51–64 (2013). ArticleCASPubMed Google Scholar
Nakatogawa, H., Ichimura, Y. & Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell130, 165–178 (2007). ArticleCASPubMed Google Scholar
Weidberg, H. et al. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J.29, 1792–1802 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kim, J., Huang, W. P., Stromhaug, P. E. & Klionsky, D. J. Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J. Biol. Chem.277, 763–773 (2002). ArticleCASPubMed Google Scholar
Suzuki, K. et al. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J.20, 5971–5981 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hamasaki, M. et al. Autophagosomes form at ER–mitochondria contact sites. Nature495, 389–393 (2013). ArticleCASPubMed Google Scholar
Vance, J. E. & Tasseva, G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim. Biophys. Acta1831, 543–554 (2013). ArticleCASPubMed Google Scholar
Hayashi-Nishino, M. et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol.11, 1433–1437 (2009). ArticlePubMed Google Scholar
Yla-Anttila, P., Vihinen, H., Jokitalo, E. & Eskelinen, E. L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy5, 1180–1185 (2009). ArticlePubMed Google Scholar
De Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature456, 605–610 (2008). ArticleCASPubMed Google Scholar
Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol.182, 685–701 (2008). ArticlePubMedPubMed Central Google Scholar
Polson, H. E. et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy6, 506–522 (2010). ArticleCASPubMed Google Scholar
Yang, J. Y. & Yang, W. Y. Bit-by-bit autophagic removal of parkin-labelled mitochondria. Nat. Commun.4, 2428 (2013). ArticleCASPubMed Google Scholar
Giordano, F. et al. PI(4,5)P2-dependent and Ca2+-regulated ER–PM interactions mediated by the extended synaptotagmins. Cell153, 1494–1509 (2013). ArticleCASPubMedPubMed Central Google Scholar
Stefan, C. J., Manford, A. G. & Emr, S. D. ER–PM connections: sites of information transfer and inter-organelle communication. Curr. Opin. Cell Biol.25, 434–442 (2013). ArticleCASPubMedPubMed Central Google Scholar
Puri, C., Renna, M., Bento, C. F., Moreau, K. & Rubinsztein, D. C. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell154, 1285–1299 (2013). ArticleCASPubMedPubMed Central Google Scholar
Yamamoto, H. et al. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol.198, 219–233 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wang, J. et al. Ypt1 recruits the Atg1 kinase to the preautophagosomal structure. Proc. Natl Acad. Sci. USA110, 9800–9805 (2013). ArticlePubMedPubMed Central Google Scholar
Kakuta, S. et al. Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site. J. Biol. Chem.287, 44261–44269 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lynch-Day, M. A. et al. Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc. Natl Acad. Sci. USA107, 7811–7816 (2010). ArticlePubMedPubMed Central Google Scholar
Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell33, 505–516 (2009). ArticlePubMed Google Scholar
Kim, P. K., Hailey, D. W., Mullen, R. T. & Lippincott-Schwartz, J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl Acad. Sci. USA105, 20567–20574 (2008). ArticlePubMedPubMed Central Google Scholar
Wild, P. M., D. McEwan & Dikic, I. The LC3 interactome at a glance. J. Cell Sci.127, 3–9 (2014). ArticleCASPubMed Google Scholar
Zhang, J. & Ney, P. A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ.16, 939–946 (2009). ArticleCASPubMed Google Scholar
Chen, Y. & Dorn, G. W. 2nd PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science340, 471–475 (2013). ArticleCASPubMedPubMed Central Google Scholar
Sarraf, S. A. et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature496, 372–376 (2013). ArticleCASPubMedPubMed Central Google Scholar
van Wijk, S. J. et al. Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. Mol. Cell47, 797–809 (2012). ArticleCASPubMedPubMed Central Google Scholar
Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol.183, 795–803 (2008). ArticlePubMedPubMed Central Google Scholar
Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol.12, 119–131 (2010). ArticleCASPubMed Google Scholar
Gegg, M. E. et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet.19, 4861–4870 (2010). ArticleCASPubMedPubMed Central Google Scholar
Narendra, D., Kane, L. A., Hauser, D. N., Fearnley, I. M. & Youle, R. J. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy6, 1090–1106 (2010). ArticleCASPubMedPubMed Central Google Scholar
Itakura, E. & Mizushima, N. p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J. Cell Biol.192, 17–27 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sterky, F. H., Lee, S., Wibom, R., Olson, L. & Larsson, N. G. Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc. Natl Acad. Sci. USA108, 12937–12942 (2011). ArticlePubMedPubMed Central Google Scholar
Mazure, N. M. & Pouyssegur, J. Hypoxia-induced autophagy: cell death or cell survival? Curr. Opin. Cell Biol.22, 177–180 (2010). ArticleCASPubMed Google Scholar
Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep.11, 45–51 (2010). ArticleCASPubMed Google Scholar
Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol.14, 177–185 (2012). ArticleCASPubMed Google Scholar
Ding, W. X. et al. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin–ubiquitin–p62-mediated mitochondrial priming. J. Biol. Chem.285, 27879–27890 (2010). ArticleCASPubMedPubMed Central Google Scholar
Melser, S. et al. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab.17, 719–730 (2013). ArticleCASPubMed Google Scholar
Chu, C. T., Bayir, H. & Kagan, V. E. LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: Implications for Parkinson disease. Autophagy10, 376–378 (2014). ArticleCASPubMed Google Scholar
Okamoto, K., Kondo-Okamoto, N. & Ohsumi, Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell17, 87–97 (2009). ArticlePubMed Google Scholar
Matsumoto, G., Wada, K., Okuno, M., Kurosawa, M. & Nukina, N. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell44, 279–289 (2011). ArticleCASPubMed Google Scholar
Pilli, M. et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity37, 223–234 (2012). ArticleCASPubMedPubMed Central Google Scholar
Nezis, I. P. et al. Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. J. Cell Biol.180, 1065–1071 (2008). ArticleCASPubMedPubMed Central Google Scholar
Komatsu, M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell131, 1149–1163 (2007). ArticleCASPubMed Google Scholar
Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem.282, 24131–24145 (2007). ArticleCASPubMed Google Scholar
Deosaran, E. et al. NBR1 acts as an autophagy receptor for peroxisomes. J. Cell Sci.126, 939–952 (2013). ArticleCASPubMed Google Scholar
Isakson, P. et al. TRAF6 mediates ubiquitination of KIF23/MKLP1 and is required for midbody ring degradation by selective autophagy. Autophagy9, 1955–1964 (2013). ArticleCASPubMed Google Scholar
Thurston, T. L., Wandel, M. P., von Muhlinen, N., Foeglein, A. & Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature482, 414–418 (2012). ArticleCASPubMedPubMed Central Google Scholar
Mostowy, S. et al. p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J. Biol. Chem.286, 26987–26995 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cemma, M., Kim, P. K. & Brumell, J. H. The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway. Autophagy7, 341–345 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kraft, C., Deplazes, A., Sohrmann, M. & Peter, M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol.10, 602–610 (2008). ArticleCASPubMed Google Scholar
Baxter, B. K. et al. Atg19p ubiquitination and the cytoplasm to vacuole trafficking pathway in yeast. J. Biol. Chem.280, 39067–39076 (2005). ArticleCASPubMed Google Scholar
Ossareh-Nazari, B. et al. Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy. J. Cell Biol.204, 909–917 (2014). ArticlePubMedPubMed Central Google Scholar
Tian, Y., Chang, J. C., Fan, E. Y., Flajolet, M. & Greengard, P. Adaptor complex AP2/PICALM, through interaction with LC3, targets Alzheimer's APP-CTF for terminal degradation via autophagy. Proc. Natl Acad. Sci. USA110, 17071–17076 (2013). ArticleCASPubMedPubMed Central Google Scholar
Sandilands, E. et al. Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat. Cell Biol.14, 51–60 (2012). ArticleCAS Google Scholar
Kanki, T., Wang, K., Cao, Y., Baba, M. & Klionsky, D. J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell17, 98–109 (2009). ArticleCASPubMedPubMed Central Google Scholar
Farre, J. C., Manjithaya, R., Mathewson, R. D. & Subramani, S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell14, 365–376 (2008). ArticleCASPubMedPubMed Central Google Scholar
Farre, J. C., Burkenroad, A., Burnett, S. F. & Subramani, S. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep.14, 441–449 (2013). ArticleCASPubMedPubMed Central Google Scholar
Filimonenko, M. et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol. Cell38, 265–279 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lin, L. et al. The scaffold protein EPG-7 links cargo-receptor complexes with the autophagic assembly machinery. J. Cell Biol.201, 113–129 (2013). ArticleCASPubMedPubMed Central Google Scholar
Zhu, Y. et al. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J. Biol. Chem.288, 1099–1113 (2013). ArticleCASPubMed Google Scholar
Rogov, V. V. et al. Structural basis for phosphorylation-triggered autophagic clearance of Salmonella. Biochem. J.454, 459–466 (2013). ArticleCASPubMed Google Scholar
Bruns, C., McCaffery, J. M., Curwin, A. J., Duran, J. M. & Malhotra, V. Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. J. Cell Biol.195, 979–992 (2011). ArticleCASPubMedPubMed Central Google Scholar
Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol.12, 222–230 (2011). ArticleCASPubMed Google Scholar
Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature469, 221–225 (2011). ArticleCASPubMed Google Scholar
Dupont, N. et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J.30, 4701–4711 (2011). ArticleCASPubMedPubMed Central Google Scholar
DeSelm, C. J. et al. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev. Cell21, 966–974 (2011). ArticleCASPubMedPubMed Central Google Scholar
Travassos, L. H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol.11, 55–62 (2010). ArticleCASPubMed Google Scholar
Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature456, 259–263 (2008). ArticlePubMedPubMed Central Google Scholar
Langemeyer, L. & Barr, F. A. Analysis of Rab GTPases. Curr. Prot. Cell Biol.57, 15.18 (2012). Google Scholar
Itoh, T., Kanno, E., Uemura, T., Waguri, S. & Fukuda, M. OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J. Cell Biol.192, 839–853 (2011). ArticleCASPubMedPubMed Central Google Scholar
Longatti, A. et al. TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J. Cell Biol.197, 659–675 (2012). ArticleCASPubMedPubMed Central Google Scholar
Popovic, D. et al. Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol. Cell. Biol.32, 1733–1744 (2012). ArticleCASPubMedPubMed Central Google Scholar
Popovic, D. & Dikic, I. TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep.http://dx/doi.org/10.1002/embr.201337995 (2014).
Yamano, K., Fogel, A. I., Wang, C., van der Bliek, A. M. & Youle, R. J. Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. eLife3, e01612 (2014). ArticleCASPubMedPubMed Central Google Scholar
Gu, F., Aniento, F., Parton, R. G. & Gruenberg, J. Functional dissection of COP-I subunits in the biogenesis of multivesicular endosomes. J. Cell Biol.139, 1183–1195 (1997). ArticleCASPubMedPubMed Central Google Scholar
Daro, E., Sheff, D., Gomez, M., Kreis, T. & Mellman, I. Inhibition of endosome function in CHO cells bearing a temperature-sensitive defect in the coatomer (COPI) component epsilon-COP. J. Cell Biol.139, 1747–1759 (1997). ArticleCASPubMedPubMed Central Google Scholar
Nickel, W., Brugger, B. & Wieland, F. T. Vesicular transport: the core machinery of COPI recruitment and budding. J. Cell Sci.115, 3235–3240 (2002). CASPubMed Google Scholar
Razi, M., Chan, E. Y. & Tooze, S. A. Early endosomes and endosomal coatomer are required for autophagy. J. Cell Biol.185, 305–321 (2009). ArticleCASPubMedPubMed Central Google Scholar
Elazar, Z., Scherz-Shouval, R. & Shorer, H. Involvement of LMA1 and GATE-16 family members in intracellular membrane dynamics. Biochim. Biophys. Acta1641, 145–156 (2003). ArticleCASPubMed Google Scholar
Sagiv, Y., Legesse-Miller, A., Porat, A. & Elazar, Z. GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J.19, 1494–1504 (2000). ArticleCASPubMedPubMed Central Google Scholar
Muller, J. M. et al. Sequential SNARE disassembly and GATE-16–GOS-28 complex assembly mediated by distinct NSF activities drives Golgi membrane fusion. J. Cell Biol.157, 1161–1173 (2002). ArticlePubMedPubMed Central Google Scholar
Subramaniam, V. N., Loh, E. & Hong, W. N-Ethylmaleimide-sensitive factor (NSF) and alpha-soluble NSF attachment proteins (SNAP) mediate dissociation of GS28-syntaxin 5 Golgi SNAP receptors (SNARE) complex. J. Biol. Chem.272, 25441–25444 (1997). ArticleCASPubMed Google Scholar
Kittler, J. T. et al. The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA(A) receptors. Mol. Cell. Neurosci.18, 13–25 (2001). ArticleCASPubMed Google Scholar
Wang, H., Bedford, F. K., Brandon, N. J., Moss, S. J. & Olsen, R. W. GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature397, 69–72 (1999). ArticleCASPubMed Google Scholar