Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo (original) (raw)
Begun, J. & Xavier, R. J. Autophagy at the crossroads of metabolism and cellular defense. Curr. Opin. Gastroenterol.29, 588–596 (2013). ArticleCASPubMed Google Scholar
Huang, J. & Brumell, J. H. Bacteria–autophagy interplay: a battle for survival. Nat. Rev. Microbiol.12, 101–114 (2014). CASPubMedPubMed Central Google Scholar
Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature451, 1069–1075 (2008). ArticleCASPubMedPubMed Central Google Scholar
The Wellcome Trust Case Control Consortium, Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447, 661–678 (2007). ArticleCASPubMed Central Google Scholar
Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet.39, 207–211 (2007). ArticleCASPubMed Google Scholar
Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet.39, 596–604 (2007). ArticleCASPubMedPubMed Central Google Scholar
Metzger, S. et al. Age at onset in Huntington’s disease is modified by the autophagy pathway: implication of the V471A polymorphism in Atg7. Hum. Genet.128, 453–459 (2010). ArticleCASPubMed Google Scholar
Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature456, 259–263 (2008). ArticleCASPubMedPubMed Central Google Scholar
Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature441, 880–884 (2006). ArticleCASPubMed Google Scholar
Rubinsztein, D. C., Codogno, P. & Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov.11, 709–730 (2012). ArticleCASPubMedPubMed Central Google Scholar
Klionsky, D. J. & Schulman, B. A. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat. Struct. Mol. Biol.21, 336–345 (2014). ArticleCASPubMedPubMed Central Google Scholar
Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol.152, 519–530 (2001). ArticleCASPubMedPubMed Central Google Scholar
Obara, K., Noda, T., Niimi, K. & Ohsumi, Y. Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae. Genes Cells13, 537–547 (2008). ArticleCASPubMed Google Scholar
Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol.182, 685–701 (2008). ArticleCASPubMedPubMed Central Google Scholar
Matsunaga, K. et al. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J. Cell Biol.190, 511–521 (2010). ArticleCASPubMedPubMed Central Google Scholar
Polson, H. E. et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy6, 506–522 (2010). ArticleCASPubMed Google Scholar
Mizushima, N., Yoshimori, T. & Ohsumi, Y. Role of the Apg12 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol.35, 553–561 (2003). ArticleCASPubMed Google Scholar
Rogov, V., Dotsch, V., Johansen, T. & Kirkin, V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell53, 167–178 (2014). ArticleCASPubMed Google Scholar
Shaid, S., Brandts, C. H., Serve, H. & Dikic, I. Ubiquitination and selective autophagy. Cell Death Differ.20, 21–30 (2013). ArticleCASPubMed Google Scholar
Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature441, 885–889 (2006). ArticleCASPubMed Google Scholar
Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol.169, 425–434 (2005). ArticleCASPubMedPubMed Central Google Scholar
Folkes, A. J. et al. The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J. Med. Chem.51, 5522–5532 (2008). ArticleCASPubMed Google Scholar
Maira, S. M. et al. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol. Cancer Ther.11, 317–328 (2012). ArticleCASPubMed Google Scholar
Miller, S. et al. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science327, 1638–1642 (2010). ArticleCASPubMedPubMed Central Google Scholar
Nyfeler, B., Bergman, P., Wilson, C. J. & Murphy, L. O. Quantitative visualization of autophagy induction by mTOR inhibitors. Methods Mol. Biol.821, 239–250 (2012). ArticleCASPubMed Google Scholar
Fujita, N. et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol. Biol. Cell19, 4651–4659 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kirkin, V., McEwan, D. G., Novak, I. & Dikic, I. A role for ubiquitin in selective autophagy. Mol. Cell34, 259–269 (2009). ArticleCASPubMed Google Scholar
Bjorkoy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol.171, 603–614 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell33, 505–516 (2009). ArticleCASPubMed Google Scholar
Thurston, T. L., Ryzhakov, G., Bloor, S., von Muhlinen, N. & Randow, F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immu.10, 1215–1221 (2009). ArticleCAS Google Scholar
Newman, A. C. et al. TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-κB signalling. PLoS ONE7, e50672 (2012). ArticleCASPubMedPubMed Central Google Scholar
Boada-Romero, E. et al. TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3. EMBO J.32, 566–582 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ohzono, C. et al. Nedd4-interacting protein 2, a short half-life membrane protein degraded in lysosomes, negatively controls down-regulation of connexin43. Biol. Pharm. Bull.33, 951–957 (2010). ArticleCASPubMed Google Scholar
Yeh, S. & Chang, C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc. Natl Acad. Sci. USA93, 5517–5521 (1996). ArticleCASPubMedPubMed Central Google Scholar
Asano, T. et al. Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol. Cell. Biol.31, 2040–2052 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bridges, K. R. Ascorbic acid inhibits lysosomal autophagy of ferritin. J. Biol. Chem.262, 14773–14778 (1987). CASPubMed Google Scholar
Ericsson, J. L. Studies on induced cellular autophagy. I. Electron microscopy of cells with in vivo labelled lysosomes. Exp. Cell Res.55, 95–106 (1969). ArticleCASPubMed Google Scholar
Mortensen, M. et al. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc. Natl Acad. Sci. USA107, 832–837 (2010). ArticleCASPubMed Google Scholar
Seglen, P. O. & Gordon, P. B. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl Acad. Sci. USA79, 1889–1892 (1982). ArticleCASPubMedPubMed Central Google Scholar
Wu, Y. T. et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J. Biol. Chem.285, 10850–10861 (2010). ArticleCASPubMedPubMed Central Google Scholar
Simonsen, A. & Tooze, S. A. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J. Cell Biol.186, 773–782 (2009). ArticleCASPubMedPubMed Central Google Scholar
Jaber, N. et al. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc. Natl Acad. Sci. USA109, 2003–2008 (2012). ArticleCASPubMedPubMed Central Google Scholar
Morishita, H. et al. Deletion of autophagy-related 5 (Atg5) and Pik3c3 genes in the lens causes cataract independent of programmed organelle degradation. J. Biol. Chem.288, 11436–11447 (2013). ArticleCASPubMedPubMed Central Google Scholar
Parekh, V. V. et al. Impaired autophagy, defective T cell homeostasis, and a wasting syndrome in mice with a T cell-specific deletion of Vps34. J. Immu.190, 5086–5101 (2013). ArticleCAS Google Scholar
Willinger, T. & Flavell, R. A. Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. Proc. Natl Acad. Sci. USA109, 8670–8675 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zhou, X. et al. Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway. Proc. Natl Acad. Sci. USA107, 9424–9429 (2010). ArticleCASPubMedPubMed Central Google Scholar
Devereaux, K. et al. Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis. PLoS ONE8, e76405 (2013). ArticleCASPubMedPubMed Central Google Scholar
Crichton, R. R. & Declercq, J. P. X-ray structures of ferritins and related proteins. Biochim. Biophys. Acta1800, 706–718 (2010). ArticleCASPubMed Google Scholar
Coffey, J. W. & DeDuve, C. Digestive activity of lysosomes. I. The digestion of proteins by extracts of rat liver lysosomes. J. Biol. Chem.243, 3255–3263 (1968). CASPubMed Google Scholar
Andrews, S. C., Treffry, A. & Harrison, P. M. Siderosomal ferritin. The missing link between ferritin and haemosiderin? Biochem. J.245, 439–446 (1987). ArticleCASPubMedPubMed Central Google Scholar
Ganz, T. & Nemeth, E. Hepcidin and disorders of iron metabolism. Annu. Rev. Med.62, 347–360 (2011). ArticleCASPubMed Google Scholar
Donovan, A., Roy, C. N. & Andrews, N. C. The ins and outs of iron homeostasis. Physiology (Bethesda)21, 115–123 (2006). CAS Google Scholar
Kidane, T. Z., Sauble, E. & Linder, M. C. Release of iron from ferritin requires lysosomal activity. Am. J. Physiol. Cell Physiol.291, C445-455 (2006). ArticleCAS Google Scholar
Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W. & Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature509, 105–109 (2014). ArticleCASPubMedPubMed Central Google Scholar
Gregory, A., Polster, B. J. & Hayflick, S. J. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J. Med. Genet.46, 73–80 (2009). ArticleCASPubMed Google Scholar
Levi, S., Cozzi, A. & Arosio, P. Neuroferritinopathy: a neurodegenerative disorder associated with L-ferritin mutation. Best Pract. Res. Clin. Haematol.18, 265–276 (2005). ArticleCASPubMed Google Scholar
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr.66, 213–221 (2010). ArticleCAS Google Scholar
Maira, S. M. et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther.7, 1851–1863 (2008). ArticleCASPubMed Google Scholar
Rush, J. et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol.23, 94–101 (2005). ArticleCASPubMed Google Scholar
Udeshi, N. D., Mertins, P., Svinkina, T. & Carr, S. A. Large-scale identification of ubiquitination sites by mass spectrometry. Nat. Protoc.8, 1950–1960 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol.26, 1367–1372 (2008). ArticleCASPubMed Google Scholar
Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res.10, 1794–1805 (2011). ArticleCASPubMed Google Scholar