Allosteric inhibition of hypoxia inducible factor-2 with small molecules (original) (raw)
Semenza, G.L. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci.33, 207–214 (2012). ArticleCASPubMedPubMed Central Google Scholar
Xia, X. et al. Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc. Natl. Acad. Sci. USA106, 4260–4265 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kondo, K., Kim, W.Y., Lechpammer, M. & Kaelin, W.G. Jr. Inhibition of HIF2α is sufficient to suppress pVHL-defective tumor growth. PLoS Biol.1, E83 (2003). ArticlePubMedPubMed Central Google Scholar
Kondo, K., Klco, J., Nakamura, E., Lechpammer, M. & Kaelin, W.G. Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell1, 237–246 (2002). ArticleCASPubMed Google Scholar
Maranchie, J.K. et al. The contribution of VHL substrate binding and HIF1-α to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell1, 247–255 (2002). ArticleCASPubMed Google Scholar
Erbel, P.J., Card, P.B., Karakuzu, O., Bruick, R.K. & Gardner, K.H. Structural basis for PAS domain heterodimerization in the basic helix-loop-helix–PAS transcription factor hypoxia-inducible factor. Proc. Natl. Acad. Sci. USA100, 15504–15509 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yang, J. et al. Functions of the Per/ARNT/Sim (PAS) domains of the hypoxia inducible factor (HIF). J. Biol. Chem.280, 36047–36054 (2005). ArticleCASPubMed Google Scholar
Partch, C.L., Card, P.B., Amezcua, C.A. & Gardner, K.H. Molecular basis of coiled coil coactivator recruitment by the aryl hydrocarbon receptor nuclear translocator (ARNT). J. Biol. Chem.284, 15184–15192 (2009). ArticleCASPubMedPubMed Central Google Scholar
Partch, C.L. & Gardner, K.H. Coactivators necessary for transcriptional output of the hypoxia inducible factor, HIF, are directly recruited by ARNT PAS-B. Proc. Natl. Acad. Sci. USA108, 7739–7744 (2011). ArticleCASPubMedPubMed Central Google Scholar
Henry, J.T. & Crosson, S. Ligand-binding PAS domains in a genomic, cellular, and structural context. Annu. Rev. Microbiol.65, 261–286 (2011). ArticleCASPubMedPubMed Central Google Scholar
Harper, S.M., Neil, L.C. & Gardner, K.H. Structural basis of a phototropin light switch. Science301, 1541–1544 (2003). ArticleCASPubMed Google Scholar
Wells, J.A. & McClendon, C.L. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature450, 1001–1009 (2007). ArticleCASPubMed Google Scholar
Koehler, A.N. A complex task? Direct modulation of transcription factors with small molecules. Curr. Opin. Chem. Biol.14, 331–340 (2010). ArticleCASPubMedPubMed Central Google Scholar
Key, J., Scheuermann, T.H., Anderson, P.C., Daggett, V. & Gardner, K.H. Principles of ligand binding within a completely buried cavity in HIF2α PAS-B. J. Am. Chem. Soc.131, 17647–17654 (2009). ArticleCASPubMedPubMed Central Google Scholar
Scheuermann, T.H. et al. Artificial ligand binding within the HIF2α PAS-B domain of the HIF2 transcription factor. Proc. Natl. Acad. Sci. USA106, 450–455 (2009). ArticleCASPubMedPubMed Central Google Scholar
Qing, G. & Simon, M.C. Hypoxia inducible factor-2α: a critical mediator of aggressive tumor phenotypes. Curr. Opin. Genet. Dev.19, 60–66 (2009). ArticleCASPubMedPubMed Central Google Scholar
Morris, M.R. et al. Mutation analysis of hypoxia-inducible factors HIF1α and HIF2α in renal cell carcinoma. Anticancer Res.29, 4337–4343 (2009). CASPubMed Google Scholar
Kaelin, W.G. Jr. Treatment of kidney cancer: insights provided by the VHL tumor-suppressor protein. Cancer115, 2262–2272 (2009). ArticleCASPubMed Google Scholar
Shen, C. et al. Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene. Cancer Discov.1, 222–235 (2011). ArticleCASPubMedPubMed Central Google Scholar
Amezcua, C.A., Harper, S.M., Rutter, J. & Gardner, K.H. Structure and interactions of PAS kinase N-terminal PAS domain: model for intramolecular kinase regulation. Structure10, 1349–1361 (2002). ArticleCASPubMed Google Scholar
Rogers, J.L. et al. Development of inhibitors of the PAS-B domain of the HIF-2α transcription factor. J. Med. Chem. 10.1021/jm301847z (30 January 2013).
Krieg, M. et al. Up-regulation of hypoxia-inducible factors HIF-1α and HIF-2α under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function. Oncogene19, 5435–5443 (2000). ArticleCASPubMed Google Scholar
Dioum, E.M. et al. Regulation of hypoxia-inducible factor 2α signaling by the stress-responsive deacetylase sirtuin 1. Science324, 1289–1293 (2009). ArticleCASPubMed Google Scholar
Scortegagna, M. et al. HIF-2α regulates murine hematopoietic development in an erythropoietin-dependent manner. Blood105, 3133–3140 (2005). ArticleCASPubMed Google Scholar
Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer3, 721–732 (2003). CASPubMed Google Scholar
Keith, B., Johnson, R.S. & Simon, M.C. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer12, 9–22 (2012). ArticleCAS Google Scholar
Franovic, A., Holterman, C.E., Payette, J. & Lee, S. Human cancers converge at the HIF-2α oncogenic axis. Proc. Natl. Acad. Sci. USA106, 21306–21311 (2009). ArticleCASPubMedPubMed Central Google Scholar
Holmquist-Mengelbier, L. et al. Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype. Cancer Cell10, 413–423 (2006). ArticleCASPubMed Google Scholar
Pietras, A. et al. HIF-2α maintains an undifferentiated state in neural crest-like human neuroblastoma tumor-initiating cells. Proc. Natl. Acad. Sci. USA106, 16805–16810 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science292, 464–468 (2001). ArticleCASPubMed Google Scholar
Jaakkola, P. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science292, 468–472 (2001). ArticleCASPubMed Google Scholar
Lando, D. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev.16, 1466–1471 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J. & Whitelaw, M.L. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science295, 858–861 (2002). ArticleCASPubMed Google Scholar
Halavaty, A.S. & Moffat, K. N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa. Biochemistry46, 14001–14009 (2007). ArticleCASPubMed Google Scholar
Park, E.J. et al. Targeting the PAS-A domain of HIF-1α for development of small molecule inhibitors of HIF-1. Cell Cycle5, 1847–1853 (2006). ArticleCASPubMed Google Scholar
Lee, K. et al. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc. Natl. Acad. Sci. USA106, 17910–17915 (2009). ArticleCASPubMedPubMed Central Google Scholar
Semenza, G.L. HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev.20, 51–56 (2010). ArticleCASPubMed Google Scholar
Johnson, B.A. & Blevins, R.A. NMRView: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR4, 603–614 (1994). ArticleCASPubMed Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCASPubMed Google Scholar
Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr.66, 213–221 (2010). ArticleCASPubMedPubMed Central Google Scholar
Schüttelkopf, A.W. & van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr.60, 1355–1363 (2004). ArticlePubMed Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004). PubMed Google Scholar
Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr.66, 12–21 (2010). ArticleCASPubMed Google Scholar
Martí-Renom, M.A. et al. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct.29, 291–325 (2000). ArticlePubMed Google Scholar
Bookout, A.L. & Mangelsdorf, D.J. Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nucl. Recept. Signal.1, e012 (2003). ArticlePubMedPubMed Central Google Scholar
Chen, R., Dioum, E.M., Hogg, R.T., Gerard, R.D. & Garcia, J.A. Hypoxia increases sirtuin 1 expression in a hypoxia-inducible factor-dependent manner. J. Biol. Chem.286, 13869–13878 (2011). ArticleCASPubMedPubMed Central Google Scholar
McNaney, C.A. et al. An automated liquid chromatography-mass spectrometry process to determine metabolic stability half-life and intrinsic clearance of drug candidates by substrate depletion. Assay Drug Dev. Technol.6, 121–129 (2008). ArticleCASPubMed Google Scholar
Drexler, D.M. et al. An automated high throughput liquid chromatography-mass spectrometry process to assess the metabolic stability of drug candidates. Assay Drug Dev. Technol.5, 247–264 (2007). ArticleCASPubMed Google Scholar