- Holthuis, J.C., Pomorski, T., Raggers, R.J., Sprong, H. & Van Meer, G. The organizing potential of sphingolipids in intracellular membrane transport. Physiol. Rev. 81, 1689–1723 (2001).
Article CAS PubMed Google Scholar
- Merrill, A.H.J. & Sandhoff, K. Sphingolipids: metabolism and cell signaling. in Biochemistry of Lipids, Lipoproteins and Membranes (eds. D.E. Vance & J.E. Vance) 373–407 (Elsevier, 2002).
Chapter Google Scholar
- Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).
Article CAS PubMed Google Scholar
- Brinkmann, V. et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem. 277, 21453–21457 (2002).
Article CAS PubMed Google Scholar
- Lahiri, S. & Futerman, A. The metabolism and function of sphingolipids and glycosphingolipids. Cell. Mol. Life Sci. 64, 2270–2284 (2007).
Article CAS PubMed Google Scholar
- Hannun, Y.A. & Obeid, L.M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150 (2008).
Article CAS Google Scholar
- Zheng, W. et al. Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim. Biophys. Acta 1758, 1864–1884 (2006).
Article CAS PubMed Google Scholar
- Han, G. et al. Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proc. Natl. Acad. Sci. USA 106, 8186–8191 (2009).
Article CAS PubMed Google Scholar
- Breslow, D.K. et al. Orm family proteins mediate sphingolipid homeostasis. Nature 463, 1048–1053 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Chalfant, C.E. & Spiegel, S. Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J. Cell Sci. 118, 4605–4612 (2005).
Article CAS PubMed Google Scholar
- Shida, D., Takabe, K., Kapitonov, D., Milstien, S. & Spiegel, S. Targeting SphK1 as a new strategy against cancer. Curr. Drug Targets 9, 662–673 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Pyne, S., Lee, S.C., Long, J. & Pyne, N.J. Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cell. Signal. 21, 14–21 (2009).
Article CAS PubMed Google Scholar
- Alemany, R., van Koppen, C.J., Danneberg, K., Ter Braak, M. & Meyer Zu Heringdorf, D. Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch. Pharmacol. 374, 413–428 (2007).
Article CAS PubMed Google Scholar
- Mizugishi, K. et al. Essential role for sphingosine kinases in neural and vascular development. Mol. Cell. Biol. 25, 11113–11121 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Gillies, L. et al. The sphingosine 1-phosphate receptor 5 and sphingosine kinases 1 and 2 are localised in centrosomes: possible role in regulating cell division. Cell. Signal. 21, 675–684 (2009).
Article CAS PubMed Google Scholar
- Jarman, K.E., Moretti, P.A., Zebol, J.R. & Pitson, S.M. Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. J. Biol. Chem. 285, 483–492 (2010).
Article CAS PubMed Google Scholar
- Mizugishi, K. et al. Maternal disturbance in activated sphingolipid metabolism causes pregnancy loss in mice. J. Clin. Invest. 117, 2993–3006 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Hait, N.C. et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325, 1254–1257 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Weigert, A. et al. Sphingosine kinase 2 deficient tumor xenografts show impaired growth and fail to polarize macrophages towards an anti-inflammatory phenotype. Int. J. Cancer 125, 2114–2121 (2009).
Article CAS PubMed Google Scholar
- Lai, W.Q. et al. Distinct roles of sphingosine kinase 1 and 2 in murine collagen-induced arthritis. J. Immunol. 183, 2097–2103 (2009).
Article CAS PubMed Google Scholar
- Wacker, B.K., Park, T.S. & Gidday, J.M. Hypoxic preconditioning-induced cerebral ischemic tolerance: role of microvascular sphingosine kinase 2. Stroke 40, 3342–3348 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Liu, H. et al. Sphingosine kinase type 2 is a putative BH3-Only protein that induces apoptosis. J. Biol. Chem. 278, 40330–40336 (2003).
Article CAS PubMed Google Scholar
- Weigert, A. et al. Cleavage of sphingosine kinase 2 by caspase-1 provokes its release from apoptotic cells. Blood 115, 3531–3540 (2010).
Article CAS PubMed Google Scholar
- Don, A.S. & Rosen, H. A lipid binding domain in sphingosine kinase 2. Biochem. Biophys. Res. Commun. 380, 87–92 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Samy, E.T. et al. Cutting edge: Modulation of intestinal autoimmunity and IL-2 signaling by sphingosine kinase 2 independent of sphingosine 1-phosphate. J. Immunol. 179, 5644–5648 (2007).
Article CAS PubMed Google Scholar
- Pappu, R. et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316, 295–298 (2007).
Article CAS PubMed Google Scholar
- Sigal, Y.J., McDermott, M.I. & Morris, A.J. Integral membrane lipid phosphatases/phosphotransferases: common structure and diverse functions. Biochem. J. 387, 281–293 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Brindley, D.N. & Pilquil, C. Lipid phosphate phosphatases and signaling. J. Lipid Res. 50 Suppl, S225–S230 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Kirby, R.J. et al. Dynamic regulation of sphingosine-1-phosphate homeostasis during development of mouse metanephric kidney. Am. J. Physiol. Renal Physiol. 296, F634–F641 (2009).
Article CAS PubMed Google Scholar
- Giussani, P. et al. Sphingosine-1-phosphate phosphohydrolase regulates endoplasmic reticulum-to-golgi trafficking of ceramide. Mol. Cell. Biol. 26, 5055–5069 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Peter, B.F. et al. Role of sphingosine-1-phosphate phosphohydrolase 1 in the regulation of resistance artery tone. Circ. Res. 103, 315–324 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Mechtcheriakova, D. et al. FTY720-phosphate is dephosphorylated by lipid phosphate phosphatase 3. FEBS Lett. 581, 3063–3068 (2007).
Article CAS PubMed Google Scholar
- Serra, M. & Saba, J.D. Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. Adv. Enzyme Regul. 50, 349–362 (2010).
Article PubMed Google Scholar
- Zhan, X. & Desiderio, D.M. Nitroproteins from a human pituitary adenoma tissue discovered with a nitrotyrosine affinity column and tandem mass spectrometry. Anal. Biochem. 354, 279–289 (2006).
Article CAS PubMed Google Scholar
- Mukhopadhyay, D., Howell, K.S., Riezman, H. & Capitani, G. Identifying key residues of sphinganine-1-phosphate lyase for function in vivo and in vitro. J. Biol. Chem. 283, 20159–20169 (2008).
Article CAS PubMed Google Scholar
- Vogel, P. et al. Incomplete inhibition of sphingosine 1-phosphate lyase modulates immune system function yet prevents early lethality and non-lymphoid lesions. PLoS ONE 4, e4112 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Hagen, N. et al. Subcellular origin of sphingosine-1-phosphate is essential for its toxic effect in lyase deficient neurons. J. Biol. Chem. 284, 11346–11353 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Bektas, M. et al. Sphingosine-1-phosphate lyase deficiency disrupts lipid homeostasis in liver. J. Biol. Chem. 285, 10880–10889 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Dobrosotskaya, I.Y., Seegmiller, A., Brown, M., Goldstein, J. & Rawson, R. Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science 296, 879–883 (2002).
Article CAS PubMed Google Scholar
- Stratford, S., Hoehn, K., Liu, F. & Summers, S. Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J. Biol. Chem. 279, 36608–36615 (2004).
Article CAS PubMed Google Scholar
- Zhang, K. et al. Redirection of sphingolipid metabolism towards de novo synthesis of ethanolamine in Leishmania. EMBO J. 26, 1094–1104 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Bourquin, F., Riezman, H., Capitani, G. & Gerhard, M. Structure (in press).
- Kono, M., Allende, M.L. & Proia, R.L. Sphingosine-1-phosphate regulation of mammalian development. Biochim. Biophys. Acta 1781, 435–441 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Choi, J.W., Lee, C.W. & Chun, J. Biological roles of lysophospholipid receptors revealed by genetic null mice: an update. Biochim. Biophys. Acta 1781, 531–539 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Skoura, A. & Hla, T. Lysophospholipid receptors in vertebrate development, physiology, and pathology. J. Lipid Res. 50 Suppl, S293–S298 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Strochlic, L., Dwivedy, A., van Horck, F.P., Falk, J. & Holt, C.E. A role for S1P signalling in axon guidance in the Xenopus visual system. Development 135, 333–342 (2008).
Article CAS PubMed Google Scholar
- Miron, V.E. et al. Fingolimod (FTY720) enhances remyelination following demyelination of organotypic cerebellar slices. Am. J. Pathol. doi:10.2353/ajpath.2010.091234 (22 April 2010).
- Olivera, A. et al. Sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 are vital to recovery from anaphylactic shock in mice. J. Clin. Invest. 120, 1429–1440 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Pébay, A. et al. Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells 23, 1541–1548 (2005).
Article CAS PubMed Google Scholar
- Bai, A., Hu, H., Yeung, M. & Chen, J. Kruppel-like factor 2 controls T cell trafficking by activating L-selectin (CD62L) and sphingosine-1-phosphate receptor 1 transcription. J. Immunol. 178, 7632–7639 (2007).
Article CAS PubMed Google Scholar
- Jenne, C.N. et al. T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J. Exp. Med. 206, 2469–2481 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Sanchez, T. & Hla, T. Structural and functional characteristics of S1P receptors. J. Cell. Biochem. 92, 913–922 (2004).
Article CAS PubMed Google Scholar
- Rosen, H., Gonzalez-Cabrera, P.J., Sanna, M.G. & Brown, S. Sphingosine 1-phosphate receptor signaling. Annu. Rev. Biochem. 78, 743–768 (2009).
Article CAS PubMed Google Scholar
- Mitra, P. et al. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc. Natl. Acad. Sci. USA 103, 16394–16399 (2006).
Article CAS PubMed Google Scholar
- Kobayashi, N., Yamaguchi, A. & Nishi, T. Characterization of the ATP-dependent sphingosine 1-phosphate transporter in rat erythrocytes. J. Biol. Chem. 284, 21192–21200 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Kupperman, E., An, S., Osborne, N., Waldron, S. & Stainier, D.Y. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 406, 192–195 (2000).
Article CAS PubMed Google Scholar
- Kawahara, A. et al. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323, 524–527 (2009).
Article CAS PubMed Google Scholar
- Nakano, Y. et al. Mutations in the novel membrane protein spinster interfere with programmed cell death and cause neural degeneration in Drosophila melanogaster. Mol. Cell. Biol. 21, 3775–3788 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Hinkovska-Galcheva, V., VanWay, S.M., Shanley, T.P. & Kunkel, R.G. The role of sphingosine-1-phosphate and ceramide-1-phosphate in calcium homeostasis. Curr. Opin. Investig. Drugs 9, 1192–1205 (2008).
CAS PubMed Google Scholar
- Estrada, R. et al. Ligand-induced nuclear translocation of S1P(1) receptors mediates Cyr61 and CTGF transcription in endothelial cells. Histochem. Cell Biol. 131, 239–249 (2009).
Article CAS PubMed Google Scholar
- Liao, J.J. et al. Distinctive T cell-suppressive signals from nuclearized type 1 sphingosine 1-phosphate G protein-coupled receptors. J. Biol. Chem. 282, 1964–1972 (2007).
Article CAS PubMed Google Scholar
- Adachi-Yamada, T. et al. De novo synthesis of sphingolipids is required for cell survival by down-regulating c-Jun N-terminal kinase in Drosophila imaginal discs. Mol. Cell. Biol. 19, 7276–7286 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Dasgupta, U. et al. Ceramide kinase regulates phospholipase C and phosphatidylinositol 4, 5, bisphosphate in phototransduction. Proc. Natl. Acad. Sci. USA 106, 20063–20068 (2009).
Article CAS PubMed Google Scholar
- Schmahl, J., Rizzolo, K. & Soriano, P. The PDGF signaling pathway controls multiple steroid-producing lineages. Genes Dev. 22, 3255–3267 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Zammit, P.S., Partridge, T.A. & Yablonka-Reuveni, Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J. Histochem. Cytochem. 54, 1177–1191 (2006).
Article CAS PubMed Google Scholar
- Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).
Article CAS PubMed Google Scholar
- Kharel, Y. et al. Sphingosine kinase 2 is required for modulation of lympocyte traffic by FTY720 J Biol. Chem. 280, 36865–36872 (2005).
Article CAS PubMed Google Scholar
- Rivera, J., Proia, R.L. & Olivera, A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat. Rev. Immunol. 8, 753–763 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Shimizu, T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 49, 123–150 (2009).
Article CAS PubMed Google Scholar
- Schwab, S.R. & Cyster, J.G. Finding a way out: lymphocyte egress from lymphoid organs. Nat. Immunol. 8, 1295–1301 (2007).
Article CAS PubMed Google Scholar
- Zachariah, M.A. & Cyster, J.G. Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science doi:10.1126/science.1188222 (22 April 2010).
- Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).
Article CAS PubMed Google Scholar
- Cohen, J.A. et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362, 402–415 (2010).
Article CAS PubMed Google Scholar
- Ratajczak, M.Z. et al. Novel insight into stem cell mobilization-Plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 24, 976–985 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Gossens, K. et al. Thymic progenitor homing and lymphocyte homeostasis are linked via S1P-controlled expression of thymic P-selectin/CCL25. J. Exp. Med. 206, 761–778 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Weber, C. K.A., Münk, A., Bode, C., Van Veldhoven, P.P. & Gräler, M.H. Discontinued postnatal thymocyte development in sphingosine 1-phosphate-lyase-deficient mice. J. Immunol. 183, 4292–4301 (2009).
Article CAS PubMed Google Scholar
- Ishii, M. et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458, 524–528 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Pereira, J.P., Xu, Y. & Cyster, J.G. A role for S1P and S1P1 in immature-B cell egress from mouse bone marrow. PLoS ONE 5, e9277 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Allende, M.L. et al. S1P1 receptor directs the release of immature B cells from bone marrow into blood. J. Exp. Med. doi: 10.1084/jem.20092210 (19 April 2010).
- Wolf, A.M. et al. The sphingosine 1-phosphate receptor agonist FTY720 potently inhibits regulatory T cell proliferation in vitro and in vivo. J. Immunol. 183, 3751–3760 (2009).
Article CAS PubMed Google Scholar
- Michaud, J., Im, D. & Hla, T. Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation. J. Immunol. 184, 1475–1483 (2010).
Article CAS PubMed Google Scholar
- Means, C.K. et al. Sphingosine 1-phosphate S1P2 and S1P3 receptor-mediated Akt activation protects against in vivo myocardial ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 292, H2944–H2951 (2007).
Article CAS PubMed Google Scholar
- Hasegawa, Y., Suzuki, H., Sozen, T., Rolland, W. & Zhang, J.H. Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke 41, 368–374 (2010).
Article CAS PubMed Google Scholar
- Morita, Y. et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat. Med. 6, 1109–1114 (2000).
Article CAS PubMed Google Scholar
- Sattler, K. & Levkau, B. Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovasc. Res. 82, 201–211 (2009).
Article CAS PubMed Google Scholar
- Xia, P. et al. An oncogenic role of sphingosine kinase. Curr. Biol. 10, 1527–1530 (2000).
Article CAS PubMed Google Scholar
- Visentin, B. et al. Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9, 225–238 (2006).
Article CAS PubMed Google Scholar
- Oskouian, B. et al. Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is downregulated in colon cancer. Proc. Natl. Acad. Sci. USA 103, 17384–17389 (2006).
Article CAS PubMed Google Scholar
- Colié, S. et al. Disruption of sphingosine 1-phosphate lyase confers resistance to chemotherapy and promotes oncogenesis through Bcl-2/Bcl-xL upregulation. Cancer Res. 69, 9346–9353 (2009).
Article CAS PubMed Google Scholar
- Cattoretti, G. et al. Targeted disruption of the S1P2 sphingosine 1-phosphate receptor gene leads to diffuse large B-cell lymphoma formation. Cancer Res. 69, 8686–8692 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Levi, M., Meijler, M.M., Gomez-Munoz, A. & Zor, T. Distinct receptor-mediated activities in macrophages for natural ceramide-1-phosphate (C1P) and for phospho-ceramide analogue-1 (PCERA-1). Mol. Cell. Endocrinol. 314, 248–255 (2010).
Article CAS PubMed Google Scholar
- Wijesinghe, D.S. et al. Substrate specificity of human ceramide kinase. J. Lipid Res. 46, 2706–2716 (2005).
Article CAS PubMed Google Scholar
- Granado, M.H. et al. Ceramide 1-phosphate (C1P) promotes cell migration Involvement of a specific C1P receptor. Cell. Signal. 21, 405–412 (2009).
Article CAS PubMed Google Scholar
- Lankalapalli, R.S., Ouro, A., Arana, L., Gomez-Munoz, A. & Bittman, R. Caged ceramide 1-phosphate analogues: synthesis and properties. J. Org. Chem. 74, 8844–8847 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Vacaru, A.M. et al. Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER. J. Cell Biol. 185, 1013–1027 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Ternes, P., Brouwers, J.F., van den Dikkenberg, J. & Holthuis, J.C. Sphingomyelin synthase SMS2 displays dual activity as ceramide phosphoethanolamine synthase. J. Lipid Res. 50, 2270–2277 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Eichler, F.S. et al. Overexpression of the wild-type SPT1 subunit lowers desoxysphingolipid levels and rescues the phenotype of HSAN1. J. Neurosci. 29, 14646–14651 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Symolon, H., Schmelz, E., Dillehay, D. & Merrill, A.J. Dietary soy sphingolipids suppress tumorigenesis and gene expression in 1,2-dimethylhydrazine-treated CF1 mice and ApcMin/+ mice. J. Nutr. 134, 1157–1161 (2004).
Article CAS PubMed Google Scholar
- Fyrst, H. et al. Natural sphingadienes inhibit Akt-dependent signaling and prevent intestinal tumorigenesis. Cancer Res. 69, 9457–9464 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Yamaji, T., Kumagai, K., Tomishige, N. & Hanada, K. Two sphingolipid transfer proteins, CERT and FAPP2: their roles in sphingolipid metabolism. IUBMB Life 60, 511–518 (2008).
Article CAS PubMed Google Scholar
- Mao, C. & Obeid, L.M. Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim. Biophys. Acta 1781, 424–434 (2008).
Article CAS PubMed PubMed Central Google Scholar