Generation of functional insulin-producing cells in the gut by Foxo1 ablation (original) (raw)
Zhou, Q. & Melton, D.A. Pathways to new β cells. Cold Spring Harb. Symp. Quant. Biol.73, 175–181 (2008). ArticleCASPubMed Google Scholar
Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol.26, 443–452 (2008). ArticleCASPubMed Google Scholar
Bonal, C. & Herrera, P.L. Genes controlling pancreas ontogeny. Int. J. Dev. Biol.52, 823–835 (2008). ArticleCASPubMed Google Scholar
Gradwohl, G., Dierich, A., LeMeur, M. & Guillemot, F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA97, 1607–1611 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jensen, J. et al. Control of endodermal endocrine development by Hes-1. Nat. Genet.24, 36–44 (2000). ArticleCASPubMed Google Scholar
Schwitzgebel, V.M. et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development127, 3533–3542 (2000). CASPubMed Google Scholar
Lee, C.S., Perreault, N., Brestelli, J.E. & Kaestner, K.H. Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity. Genes Dev.16, 1488–1497 (2002). ArticleCASPubMedPubMed Central Google Scholar
Schonhoff, S.E., Giel-Moloney, M. & Leiter, A.B. Neurogenin 3–expressing progenitor cells in the gastrointestinal tract differentiate into both endocrine and non-endocrine cell types. Dev. Biol.270, 443–454 (2004). ArticleCASPubMed Google Scholar
Schonhoff, S.E., Giel-Moloney, M. & Leiter, A.B. Minireview: development and differentiation of gut endocrine cells. Endocrinology145, 2639–2644 (2004). ArticleCASPubMed Google Scholar
Gu, G., Dubauskaite, J. & Melton, D.A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development129, 2447–2457 (2002). CASPubMed Google Scholar
Xu, X. et al. β cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell132, 197–207 (2008). ArticleCASPubMed Google Scholar
Hunt, R.K. & Jacobson, M. Specification of positional information in retinal ganglion cells of Xenopus: stability of the specified state. Proc. Natl. Acad. Sci. USA69, 2860–2864 (1972). ArticleCASPubMedPubMed Central Google Scholar
Accili, D. & Arden, K.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell117, 421–426 (2004). ArticleCASPubMed Google Scholar
Hribal, M.L., Nakae, J., Kitamura, T., Shutter, J.R. & Accili, D. Regulation of insulin-like growth factor–dependent myoblast differentiation by Foxo forkhead transcription factors. J. Cell Biol.162, 535–541 (2003). ArticleCASPubMedPubMed Central Google Scholar
Nakae, J. et al. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev. Cell4, 119–129 (2003). ArticleCASPubMed Google Scholar
Paik, J.H. et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell5, 540–553 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kitamura, T. et al. A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. J. Clin. Invest.117, 2477–2485 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kitamura, T. et al. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic β cell growth. J. Clin. Invest.110, 1839–1847 (2002). ArticleCASPubMedPubMed Central Google Scholar
Okamoto, H. et al. Role of the forkhead protein FoxO1 in β cell compensation to insulin resistance. J. Clin. Invest.116, 775–782 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kawamori, D. et al. The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J. Biol. Chem.281, 1091–1098 (2006). ArticleCASPubMed Google Scholar
Kitamura, Y.I. et al. FoxO1 protects against pancreatic β cell failure through NeuroD and MafA induction. Cell Metab.2, 153–163 (2005). ArticleCASPubMed Google Scholar
Al-Masri, M. et al. Effect of forkhead box O1 (FOXO1) on β cell development in the human fetal pancreas. Diabetologia53, 699–711 (2010). ArticleCASPubMed Google Scholar
Lee, J.C. et al. Regulation of the pancreatic pro-endocrine gene neurogenin3. Diabetes50, 928–936 (2001). ArticleCASPubMed Google Scholar
Fukuda, A. et al. Ectopic pancreas formation in _Hes1_-knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas. J. Clin. Invest.116, 1484–1493 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kageyama, R., Ohtsuka, T. & Tomita, K. The bHLH gene Hes1 regulates differentiation of multiple cell types. Mol. Cells10, 1–7 (2000). ArticleCASPubMed Google Scholar
van der Flier, L.G. & Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol.71, 241–260 (2009). ArticleCASPubMed Google Scholar
Hingorani, S.R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell4, 437–450 (2003). ArticleCASPubMed Google Scholar
Fujita, Y. et al. Glucose-dependent insulinotropic polypeptide is expressed in pancreatic islet α-cells and promotes insulin secretion. Gastroenterology138, 1966–1975 (2010). ArticleCASPubMed Google Scholar
Wang, S. et al. Sustained Neurog3 expression in hormone-expressing islet cells is required for endocrine maturation and function. Proc. Natl. Acad. Sci. USA106, 9715–9720 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tuttle, R.L. et al. Regulation of pancreatic (-cell growth and survival by the serine/threonine protein kinase Akt1/PKBα. Nat. Med.7, 1133–1137 (2001). ArticleCASPubMed Google Scholar
Nielsen, K. et al. β-cell maturation leads to in vitro sensitivity to cytotoxins. Diabetes48, 2324–2332 (1999). ArticleCASPubMed Google Scholar
Sommer, L., Ma, Q. & Anderson, D.J. neurogenins, a novel family of _atonal_-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol. Cell. Neurosci.8, 221–241 (1996). ArticleCASPubMed Google Scholar
Gershengorn, M.C. et al. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science306, 2261–2264 (2004). ArticleCASPubMed Google Scholar
Naya, F.J. et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev.11, 2323–2334 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gao, N., White, P. & Kaestner, K.H. Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev. Cell16, 588–599 (2009). ArticleCASPubMedPubMed Central Google Scholar
Nakamura, T., Tsuchiya, K. & Watanabe, M. Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision. J. Gastroenterol.42, 705–710 (2007). ArticleCASPubMed Google Scholar
Essers, M.A. et al. Functional interaction between β-catenin and FOXO in oxidative stress signaling. Science308, 1181–1184 (2005). ArticleCASPubMed Google Scholar
Sewalt, R.G., Gunster, M.J., van der Vlag, J., Satijn, D.P. & Otte, A.P. C-terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins. Mol. Cell. Biol.19, 777–787 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hoffman, B.G., Zavaglia, B., Beach, M. & Helgason, C.D. Expression of Groucho/TLE proteins during pancreas development. BMC Dev. Biol.8, 81 (2008). ArticlePubMedPubMed Central Google Scholar
Muhr, J., Andersson, E., Persson, M., Jessell, T.M. & Ericson, J. Groucho-mediated transcriptional repression establishes progenitor cell pattern and neuronal fate in the ventral neural tube. Cell104, 861–873 (2001). ArticleCASPubMed Google Scholar
Sonoshita, M. et al. Suppression of colon cancer metastasis by Aes through inhibition of Notch signaling. Cancer Cell19, 125–137 (2011). ArticleCASPubMed Google Scholar
Cheung, A.T. et al. Glucose-dependent insulin release from genetically engineered K cells. Science290, 1959–1962 (2000). ArticleCASPubMed Google Scholar
Nielsen, L.B. et al. Co-localisation of the Kir6.2/SUR1 channel complex with glucagon-like peptide–1 and glucose-dependent insulinotrophic polypeptide expression in human ileal cells and implications for glycaemic control in new onset type 1 diabetes. Eur. J. Endocrinol.156, 663–671 (2007). ArticleCASPubMed Google Scholar
D'Amour, K.A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol.24, 1392–1401 (2006). ArticleCASPubMed Google Scholar
Mundell, N.A. & Labosky, P.A. Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates. Development138, 641–652 (2011). ArticleCASPubMedPubMed Central Google Scholar
Uhlenhaut, N.H. et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell139, 1130–1142 (2009). ArticleCASPubMed Google Scholar
Bjerknes, M. & Cheng, H. Neurogenin 3 and the enteroendocrine cell lineage in the adult mouse small intestinal epithelium. Dev. Biol.300, 722–735 (2006). ArticleCASPubMed Google Scholar
Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature444, 1083–1087 (2006). ArticleCASPubMed Google Scholar
Paik, J.H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell128, 309–323 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sherman, B.M., Gorden, P., Roth, J. & Freychet, P. Circulating insulin: the proinsulin-like properties of “big” insulin in patients without islet cell tumors. J. Clin. Invest.50, 849–858 (1971). ArticleCASPubMedPubMed Central Google Scholar
Golaz, J.L., Vonlaufen, N., Hemphill, A. & Burgener, I.A. Establishment and characterization of a primary canine duodenal epithelial cell culture. In Vitro Cell. Dev. Biol. Anim.43, 176–185 (2007). ArticleCASPubMed Google Scholar
Gao, N. et al. Foxa2 controls vesicle docking and insulin secretion in mature β cells. Cell Metab.6, 267–279 (2007). ArticleCASPubMed Google Scholar
Suzuki, A., Nakauchi, H. & Taniguchi, H. Glucagon-like peptide 1 (1–37) converts intestinal epithelial cells into insulin-producing cells. Proc. Natl. Acad. Sci. USA100, 5034–5039 (2003). ArticleCASPubMedPubMed Central Google Scholar