POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia (original) (raw)
Rozman, C. & Montserrat, E. Chronic lymphocytic leukemia. N. Engl. J. Med.333, 1052–1057 (1995). ArticleCASPubMed Google Scholar
Zenz, T., Mertens, D., Kuppers, R., Dohner, H. & Stilgenbauer, S. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat. Rev. Cancer10, 37–50 (2010). ArticleCASPubMed Google Scholar
Cramer, P. & Hallek, M. Hematological cancer in 2011: new therapeutic targets and treatment strategies. Nat. Rev. Clin. Oncol.9, 72–74 (2012). ArticleCASPubMed Google Scholar
Puente, X.S. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature475, 101–105 (2011). ArticleCASPubMedPubMed Central Google Scholar
Quesada, V. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet.44, 47–52 (2012). ArticleCAS Google Scholar
Fabbri, G. et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J. Exp. Med.208, 1389–1401 (2011). ArticleCASPubMedPubMed Central Google Scholar
Baumann, P. & Cech, T.R. Pot1, the putative telomere end–binding protein in fission yeast and humans. Science292, 1171–1175 (2001). ArticleCASPubMed Google Scholar
Loayza, D. & De Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature423, 1013–1018 (2003). ArticleCASPubMed Google Scholar
González-Pérez, A. & Lopez-Bigas, N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am. J. Hum. Genet.88, 440–449 (2011). ArticlePubMedPubMed Central Google Scholar
Tejera, A.M. et al. TPP1 is required for TERT recruitment, telomere elongation during nuclear reprogramming, and normal skin development in mice. Dev. Cell18, 775–789 (2010). ArticleCASPubMedPubMed Central Google Scholar
Martínez, P. et al. Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev.23, 2060–2075 (2009). ArticlePubMedPubMed Central Google Scholar
Sfeir, A., Kabir, S., van Overbeek, M., Celli, G.B. & de Lange, T. Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science327, 1657–1661 (2010). CASPubMedPubMed Central Google Scholar
Lei, M., Podell, E.R. & Cech, T.R. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat. Struct. Mol. Biol.11, 1223–1229 (2004). ArticleCASPubMed Google Scholar
Forbes, S.A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res.39, D945–D950 (2011). ArticleCASPubMed Google Scholar
Kendellen, M.F., Barrientos, K.S. & Counter, C.M. POT1 association with TRF2 regulates telomere length. Mol. Cell Biol.29, 5611–5619 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wu, L. et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell126, 49–62 (2006). ArticleCASPubMed Google Scholar
Hockemeyer, D., Sfeir, A.J., Shay, J.W., Wright, W.E. & de Lange, T. POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. EMBO J.24, 2667–2678 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hockemeyer, D., Daniels, J.P., Takai, H. & de Lange, T. Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell126, 63–77 (2006). ArticleCASPubMed Google Scholar
Martínez, P. & Blasco, M.A. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat. Rev. Cancer11, 161–176 (2011). ArticlePubMed Google Scholar
Roos, G. et al. Short telomeres are associated with genetic complexity, high-risk genomic aberrations, and short survival in chronic lymphocytic leukemia. Blood111, 2246–2252 (2008). ArticleCASPubMed Google Scholar
Lin, T.T. et al. Telomere dysfunction and fusion during the progression of chronic lymphocytic leukemia: evidence for a telomere crisis. Blood116, 1899–1907 (2010). ArticleCASPubMed Google Scholar
Stephens, P.J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell144, 27–40 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hudson, T.J. et al. International network of cancer genome projects. Nature464, 993–998 (2010). ArticleCASPubMed Google Scholar
Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics23, 2947–2948 (2007). ArticleCASPubMed Google Scholar
Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. & Barton, G.J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics25, 1189–1191 (2009). ArticleCASPubMedPubMed Central Google Scholar
Baumann, P., Podell, E. & Cech, T.R. Human Pot1 (protection of telomeres) protein: cytolocalization, gene structure, and alternative splicing. Mol. Cell Biol.22, 8079–8087 (2002). ArticleCASPubMedPubMed Central Google Scholar
Blasco, M.A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell91, 25–34 (1997). ArticleCASPubMed Google Scholar
Samper, E. et al. Normal telomere length and chromosomal end capping in poly(ADP-ribose) polymerase–deficient mice and primary cells despite increased chromosomal instability. J. Cell Biol.154, 49–60 (2001). ArticleCASPubMedPubMed Central Google Scholar
Canela, A., Vera, E., Klatt, P. & Blasco, M.A. High-throughput telomere length quantification by FISH and its application to human population studies. Proc. Natl. Acad. Sci. USA104, 5300–5305 (2007). ArticleCASPubMedPubMed Central Google Scholar