DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape (original) (raw)
Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001). ArticleCASPubMed Google Scholar
Bourque, G. et al. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res.18, 1752–1762 (2008). ArticleCASPubMedPubMed Central Google Scholar
Fichte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet.9, 397–405 (2008). ArticleCAS Google Scholar
Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet.42, 631–634 (2010). ArticleCASPubMed Google Scholar
Lynch, V.J., Leclerc, R.D., May, G. & Wagner, G.P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet.43, 1154–1159 (2011). ArticleCASPubMed Google Scholar
Wang, T. et al. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc. Natl. Acad. Sci. USA104, 18613–18618 (2007). ArticlePubMedPubMed Central Google Scholar
Xie, D. et al. Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Res.20, 804–815 (2010). ArticleCASPubMedPubMed Central Google Scholar
McClintock, B. Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol.21, 197–216 (1956). ArticleCASPubMed Google Scholar
Jordan, I.K., Rogozin, I.B., Glazko, G.V. & Koonin, E.V. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet.19, 68–72 (2003). ArticleCASPubMed Google Scholar
Polavarapu, N., Marino-Ramirez, L., Landsman, D., McDonald, J.F. & Jordan, I.K. Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA. BMC Genomics9, 226 (2008). ArticleCASPubMedPubMed Central Google Scholar
Morgan, H.D., Sutherland, H.G., Martin, D.I. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet.23, 314–318 (1999). ArticleCASPubMed Google Scholar
Slotkin, R.K. & Martienssen, R. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet.8, 272–285 (2007). ArticleCASPubMed Google Scholar
Harris, R.A. et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat. Biotechnol.28, 1097–1105 (2010). ArticleCASPubMedPubMed Central Google Scholar
Day, D.S., Luquette, L.J., Park, P.J. & Kharchenko, P.V. Estimating enrichment of repetitive elements from high-throughput sequence data. Genome Biol.11, R69 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chung, D. et al. Discovering transcription factor binding sites in highly repetitive regions of genomes with multi-read analysis of ChIP-Seq data. PLoS Comput. Biol.7, e1002111 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wang, J., Huda, A., Lunyak, V.V. & Jordan, I.K. A Gibbs sampling strategy applied to the mapping of ambiguous short-sequence tags. Bioinformatics26, 2501–2508 (2010). ArticleCASPubMedPubMed Central Google Scholar
Samuelson, L.C., Wiebauer, K., Snow, C.M. & Meisler, M.H. Retroviral and pseudogene insertion sites reveal the lineage of human salivary and pancreatic amylase genes from a single gene during primate evolution. Mol. Cell. Biol.10, 2513–2520 (1990). ArticleCASPubMedPubMed Central Google Scholar
Medstrand, P., Landry, J.R. & Mager, D.L. Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J. Biol. Chem.276, 1896–1903 (2001). ArticleCASPubMed Google Scholar
Dunn, C.A., Medstrand, P. & Mager, D.L. An endogenous retroviral long terminal repeat is the dominant promoter for human β1,3-galactosyltransferase 5 in the colon. Proc. Natl. Acad. Sci. USA100, 12841–12846 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cohen, C.J., Lock, W.M. & Mager, D.L. Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene448, 105–114 (2009). ArticleCASPubMed Google Scholar
Yan, Z. & Banerjee, R. Redox remodeling as an immunoregulatory strategy. Biochemistry49, 1059–1066 (2010). ArticleCASPubMed Google Scholar
Angelini, G. et al. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc. Natl. Acad. Sci. USA99, 1491–1496 (2002). ArticleCASPubMedPubMed Central Google Scholar
Stadler, M.B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature480, 490–495 (2011). ArticleCASPubMed Google Scholar
Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature447, 799–816 (2007). ArticleCASPubMed Google Scholar
Roussa, E., von Bohlen und Halbach, O. & Krieglstein, K. TGF-β in dopamine neuron development, maintenance and neuroprotection. Adv. Exp. Med. Biol.651, 81–90 (2009). ArticleCASPubMed Google Scholar
Wegner, M. & Stolt, C.C. From stem cells to neurons and glia: a Soxist's view of neural development. Trends Neurosci.28, 583–588 (2005). ArticleCASPubMed Google Scholar
Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature489, 57–74 (2012). ArticleCAS Google Scholar
Rosenbloom, K.R. et al. ENCODE whole-genome data in the UCSC Genome Browser: update 2012. Nucleic Acids Res.40, D912–D917 (2012). ArticleCASPubMed Google Scholar
Doolittle, W.F. & Sapienza, C. Selfish genes, the phenotype paradigm and genome evolution. Nature284, 601–603 (1980). ArticleCASPubMed Google Scholar
Ostertag, E.M. & Kazazian, H.H. Jr. Biology of mammalian L1 retrotransposons. Annu. Rev. Genet.35, 501–538 (2001). ArticleCASPubMed Google Scholar
Martínez-Garay, I. et al. Intronic L1 insertion and F268S, novel mutations in RPS6KA3 (RSK2) causing Coffin-Lowry syndrome. Clin. Genet.64, 491–496 (2003). ArticlePubMed Google Scholar
Claverie-Martin, F., Gonzalez-Acosta, H., Flores, C., Anton-Gamero, M. & Garcia-Nieto, V. De novo insertion of an Alu sequence in the coding region of the CLCN5 gene results in Dent's disease. Hum. Genet.113, 480–485 (2003). ArticleCASPubMed Google Scholar
Kidwell, M.G. & Lisch, D. Transposable elements as sources of variation in animals and plants. Proc. Natl. Acad. Sci. USA94, 7704–7711 (1997). ArticleCASPubMedPubMed Central Google Scholar
Batzer, M.A. & Deininger, P.L. Alu repeats and human genomic diversity. Nat. Rev. Genet.3, 370–379 (2002). ArticleCASPubMed Google Scholar
Britten, R.J. Cases of ancient mobile element DNA insertions that now affect gene regulation. Mol. Phylogenet. Evol.5, 13–17 (1996). ArticleCASPubMed Google Scholar
Miller, W.J., McDonald, J.F., Nouaud, D. & Anxolabehere, D. Molecular domestication—more than a sporadic episode in evolution. Genetica107, 197–207 (1999). ArticleCASPubMed Google Scholar
van de Lagemaat, L.N., Landry, J.R., Mager, D.L. & Medstrand, P. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet.19, 530–536 (2003). ArticleCASPubMed Google Scholar
Lowe, C.B., Bejerano, G. & Haussler, D. Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc. Natl. Acad. Sci. USA (in the press) (2007).
Schmidt, D. et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell148, 335–348 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bejerano, G. et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature441, 87–90 (2006). ArticleCASPubMed Google Scholar
Sasaki, T. et al. Possible involvement of SINEs in mammalian-specific brain formation. Proc. Natl. Acad. Sci. USA105, 4220–4225 (2008). ArticlePubMedPubMed Central Google Scholar
Chuong, E.B., Rumi, M.A., Soares, M.J. & Baker, J.C. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat. Genet.45, 325–329 (2013). ArticleCASPubMedPubMed Central Google Scholar
Romanov, S.R. et al. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature409, 633–637 (2001). ArticleCASPubMed Google Scholar
O'Geen, H., Echipare, L. & Farnham, P.J. Using ChIP-seq technology to generate high-resolution profiles of histone modifications. Methods Mol. Biol.791, 265–286 (2011). ArticleCASPubMedPubMed Central Google Scholar
Grunau, C., Clark, S.J. & Rosenthal, A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res.29, E65–5 (2001). ArticleCASPubMedPubMed Central Google Scholar
Rohde, C., Zhang, Y., Reinhardt, R. & Jeltsch, A. BISMA—fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences. BMC Bioinformatics11, 230 (2010). ArticleCASPubMedPubMed Central Google Scholar