Co-regulated transcriptional networks contribute to natural genetic variation in Drosophila sleep (original) (raw)
References
Knutson, K.L. & Van Cauter, E. Associations between sleep loss and increased risk of obesity and diabetes. Ann. NY Acad. Sci.1129, 287–304 (2008). Article Google Scholar
Hendricks, J.C. et al. Rest in Drosophila is a sleep-like state. Neuron25, 129–138 (2000). ArticleCAS Google Scholar
Shaw, P.J., Cirelli, C., Greenspan, R.J. & Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science287, 1834–1837 (2000). ArticleCAS Google Scholar
Cirelli, C. et al. Reduced sleep in Drosophila Shaker mutants. Nature434, 1087–1092 (2005). ArticleCAS Google Scholar
Kume, K., Kume, S., Park, S.K., Hirsh, J. & Jackson, F.R. Dopamine is a regulator of arousal in the fruit fly. J. Neurosci.25, 7377–7384 (2005). ArticleCAS Google Scholar
Williams, J.A., Sathyanarayanan, S., Hendricks, J.C. & Sehgal, A. Interaction between sleep and the immune response in Drosophila: a role for the NFkB Relish. Sleep30, 389–400 (2007). Article Google Scholar
Agosto, J. et al. Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat. Neurosci.11, 354–359 (2008). ArticleCAS Google Scholar
Joiner, W.J., Crocker, A., White, B.H. & Sehgal, A. Sleep in Drosophila is regulated by adult mushroom bodies. Nature441, 757–760 (2006). ArticleCAS Google Scholar
Pitman, J.L., McGill, J.J., Keegan, K.P. & Allada, R. A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature441, 753–756 (2006). ArticleCAS Google Scholar
Foltenyi, K., Greenspan, R.J. & Newport, J.W. Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat. Neurosci.10, 1160–1167 (2007). ArticleCAS Google Scholar
Ayroles, J.F. et al. Systems genetics of complex traits in Drosophila melanogaster. Nat. Genet. advance online publication, doi:10.1038/ng.332 (22 February 2008).
Nitz, D.A., van Swinderen, B., Tononi, G. & Greenspan, R.J. Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr. Biol.12, 1934–1940 (2002). ArticleCAS Google Scholar
Tucker, A.M., Dinges, D.F. & Van Dongen, H.P.A. Trait interindividual differences in the sleep physiology of healthy young adults. J. Sleep Res.16, 170–180 (2007). Article Google Scholar
Harbison, S.T. & Sehgal, A. Quantitative genetic analysis of sleep in Drosophila melanogaster. Genetics178, 2341–2360 (2008). ArticleCAS Google Scholar
Wu, M.N., Koh, K., Yue, Z., Joiner, W.J. & Sehgal, A. A genetic screen for sleep and circadian mutants reveals mechanisms underlying regulation of sleep in Drosophila. Sleep31, 465–472 (2008). Article Google Scholar
Passador-Gurgel, G., Hsieh, W.-P., Hunt, P., Deighton, N. & Gibson, G. Quantitative trait transcripts for nicotine resistance in Drosophila melanogaster. Nat. Genet.39, 264–268 (2007). ArticleCAS Google Scholar
Cirelli, C., LaVaute, T.M. & Tononi, G. Sleep and wakefulness modulate gene expression in Drosophila. J. Neurochem.94, 1411–1419 (2005). ArticleCAS Google Scholar
Stathakis, D.G. et al. The Catecholamines up (Catsup) protein of Drosophila melanogaster functions as a negative regulator of tyrosine hydroxylase activity. Genetics153, 361–382 (1999). CASPubMedPubMed Central Google Scholar
Andretic, R., van Swinderen, B. & Greenspan, R.J. Dopaminergic modulation of arousal in Drosophila. Curr. Biol.15, 1165–1175 (2005). ArticleCAS Google Scholar
Ganguly-Fitzgerald, I., Donlea, J. & Shaw, P.J. Waking experience affects sleep need in Drosophila. Science313, 1775–1781 (2006). ArticleCAS Google Scholar
O'Donnell, J.M., Stathakis, D.G., Burton, D.Y. & Chen, Z. Catecholamines-up, a negative regulator of tyrosine hydroxylase and GTP cyclohydrolase I in Drosophila melanogaster. in Chemistry and Biology of Pteridines and Folates (eds. Milstein, G. K. S., Levine, R. & Shane, B.) 211–215 (Kluwer Academic Publishers, Boston, 2002). Chapter Google Scholar
Bellen, H.J. et al. The BDGP Gene Disruption Project: single transposon insertions associated with 40% of Drosophila genes. Genetics167, 761–781 (2004). ArticleCAS Google Scholar
Dennis, G. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol.4, R60 (2003). Article Google Scholar
Chintapalli, V.R., Wang, J. & Dow, J.A.T. Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat. Genet.39, 715–720 (2007). ArticleCAS Google Scholar
Zhu, W. & Hanes, S.D. Identification of Drosophila Bicoid-interacting proteins using a custom two-hybrid selection. Gene245, 329–339 (2000). ArticleCAS Google Scholar
Sambandan, D., Yamamoto, A.H., Fanara, J.J., Mackay, T.F.C. & Anholt, R.R.H. Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster. Genetics174, 1349–1363 (2006). ArticleCAS Google Scholar
Zepelin, H. Mammalian sleep. in Principles and Practice of Sleep Medicine (eds. Kryger, M. H., Roth, T. & Dement, W.C.) 69–80 (W.B. Saunders Company, Philadelphia, 1994). Google Scholar
Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the Drosophila phylogeny. Nature450, 203–218 (2007).
Larracuente, A.M. et al. Evolution of protein-coding genes in Drosophila. Trends Genet.24, 114–123 (2008). ArticleCAS Google Scholar