Co-regulated transcriptional networks contribute to natural genetic variation in Drosophila sleep (original) (raw)

References

  1. Knutson, K.L. & Van Cauter, E. Associations between sleep loss and increased risk of obesity and diabetes. Ann. NY Acad. Sci. 1129, 287–304 (2008).
    Article Google Scholar
  2. Hendricks, J.C. et al. Rest in Drosophila is a sleep-like state. Neuron 25, 129–138 (2000).
    Article CAS Google Scholar
  3. Shaw, P.J., Cirelli, C., Greenspan, R.J. & Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837 (2000).
    Article CAS Google Scholar
  4. Cirelli, C. et al. Reduced sleep in Drosophila Shaker mutants. Nature 434, 1087–1092 (2005).
    Article CAS Google Scholar
  5. Kume, K., Kume, S., Park, S.K., Hirsh, J. & Jackson, F.R. Dopamine is a regulator of arousal in the fruit fly. J. Neurosci. 25, 7377–7384 (2005).
    Article CAS Google Scholar
  6. Williams, J.A., Sathyanarayanan, S., Hendricks, J.C. & Sehgal, A. Interaction between sleep and the immune response in Drosophila: a role for the NFkB Relish. Sleep 30, 389–400 (2007).
    Article Google Scholar
  7. Agosto, J. et al. Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat. Neurosci. 11, 354–359 (2008).
    Article CAS Google Scholar
  8. Joiner, W.J., Crocker, A., White, B.H. & Sehgal, A. Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441, 757–760 (2006).
    Article CAS Google Scholar
  9. Pitman, J.L., McGill, J.J., Keegan, K.P. & Allada, R. A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441, 753–756 (2006).
    Article CAS Google Scholar
  10. Foltenyi, K., Greenspan, R.J. & Newport, J.W. Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat. Neurosci. 10, 1160–1167 (2007).
    Article CAS Google Scholar
  11. Ayroles, J.F. et al. Systems genetics of complex traits in Drosophila melanogaster. Nat. Genet. advance online publication, doi:10.1038/ng.332 (22 February 2008).
  12. Nitz, D.A., van Swinderen, B., Tononi, G. & Greenspan, R.J. Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr. Biol. 12, 1934–1940 (2002).
    Article CAS Google Scholar
  13. Tucker, A.M., Dinges, D.F. & Van Dongen, H.P.A. Trait interindividual differences in the sleep physiology of healthy young adults. J. Sleep Res. 16, 170–180 (2007).
    Article Google Scholar
  14. Harbison, S.T. & Sehgal, A. Quantitative genetic analysis of sleep in Drosophila melanogaster. Genetics 178, 2341–2360 (2008).
    Article CAS Google Scholar
  15. Wu, M.N., Koh, K., Yue, Z., Joiner, W.J. & Sehgal, A. A genetic screen for sleep and circadian mutants reveals mechanisms underlying regulation of sleep in Drosophila. Sleep 31, 465–472 (2008).
    Article Google Scholar
  16. Passador-Gurgel, G., Hsieh, W.-P., Hunt, P., Deighton, N. & Gibson, G. Quantitative trait transcripts for nicotine resistance in Drosophila melanogaster. Nat. Genet. 39, 264–268 (2007).
    Article CAS Google Scholar
  17. Cirelli, C., LaVaute, T.M. & Tononi, G. Sleep and wakefulness modulate gene expression in Drosophila. J. Neurochem. 94, 1411–1419 (2005).
    Article CAS Google Scholar
  18. Stathakis, D.G. et al. The Catecholamines up (Catsup) protein of Drosophila melanogaster functions as a negative regulator of tyrosine hydroxylase activity. Genetics 153, 361–382 (1999).
    CAS PubMed PubMed Central Google Scholar
  19. Andretic, R., van Swinderen, B. & Greenspan, R.J. Dopaminergic modulation of arousal in Drosophila. Curr. Biol. 15, 1165–1175 (2005).
    Article CAS Google Scholar
  20. Ganguly-Fitzgerald, I., Donlea, J. & Shaw, P.J. Waking experience affects sleep need in Drosophila. Science 313, 1775–1781 (2006).
    Article CAS Google Scholar
  21. O'Donnell, J.M., Stathakis, D.G., Burton, D.Y. & Chen, Z. Catecholamines-up, a negative regulator of tyrosine hydroxylase and GTP cyclohydrolase I in Drosophila melanogaster. in Chemistry and Biology of Pteridines and Folates (eds. Milstein, G. K. S., Levine, R. & Shane, B.) 211–215 (Kluwer Academic Publishers, Boston, 2002).
    Chapter Google Scholar
  22. Bellen, H.J. et al. The BDGP Gene Disruption Project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167, 761–781 (2004).
    Article CAS Google Scholar
  23. Dennis, G. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, R60 (2003).
    Article Google Scholar
  24. Chintapalli, V.R., Wang, J. & Dow, J.A.T. Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat. Genet. 39, 715–720 (2007).
    Article CAS Google Scholar
  25. Zhu, W. & Hanes, S.D. Identification of Drosophila Bicoid-interacting proteins using a custom two-hybrid selection. Gene 245, 329–339 (2000).
    Article CAS Google Scholar
  26. Sambandan, D., Yamamoto, A.H., Fanara, J.J., Mackay, T.F.C. & Anholt, R.R.H. Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster. Genetics 174, 1349–1363 (2006).
    Article CAS Google Scholar
  27. Zepelin, H. Mammalian sleep. in Principles and Practice of Sleep Medicine (eds. Kryger, M. H., Roth, T. & Dement, W.C.) 69–80 (W.B. Saunders Company, Philadelphia, 1994).
    Google Scholar
  28. Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the Drosophila phylogeny. Nature 450, 203–218 (2007).
  29. Larracuente, A.M. et al. Evolution of protein-coding genes in Drosophila. Trends Genet. 24, 114–123 (2008).
    Article CAS Google Scholar

Download references