Brown, S.D.M. & Peters, J. Combining mutagenesis and genomics in the mouse–closing the phenotype gap. Trends Genet.12, 433–435 (1996). ArticleCAS Google Scholar
Dow, J.A.T. The Drosophila phenotype gap - and how to close it. Brief. Funct. Genomic. Proteomic.2, 121–127 (2003). ArticleCAS Google Scholar
Adams, M.D. et al. The genome sequence of Drosophila melanogaster. Science287, 2185–2195 (2000). Article Google Scholar
Arbeitman, M.N. et al. Gene expression during the life cycle of Drosophila melanogaster. Science297, 2270–2275 (2002). ArticleCAS Google Scholar
Andrews, J. et al. Gene discovery using computational and microarray analysis of transcription in the Drosophila melanogaster testis. Genome Res.10, 2030–2043 (2000). ArticleCAS Google Scholar
Krogh, A. The progress of physiology. Am. J. Physiol.90, 243–251 (1929). Article Google Scholar
Brand, A.H. & Perrimon, N. Targetted gene expression as a means of altering cell fates and generating dominant phenotypes. Development118, 401–415 (1993). CAS Google Scholar
Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol.3, RESEARCH0034 (2002).
Stanewsky, R. et al. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell95, 681–692 (1998). ArticleCAS Google Scholar
Emery, P., So, W.V., Kaneko, M., Hall, J.C. & Rosbash, M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell95, 669–679 (1998). ArticleCAS Google Scholar
Ivanchenko, M., Stanewsky, R. & Giebultowicz, J.M. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks. J. Biol. Rhythms16, 205–215 (2001). ArticleCAS Google Scholar
Giebultowicz, J.M., Stanewsky, R., Hall, J.C. & Hege, D.M. Transplanted Drosophila excretory tubules maintain circadian clock cycling out of phase with the host. Curr. Biol.10, 107–110 (2000). ArticleCAS Google Scholar
Carthew, R.W. Adhesion proteins and the control of cell shape. Curr. Opin. Genet. Dev.15, 358–363 (2005). ArticleCAS Google Scholar
Graham, L.A. & Davies, P.L. The odorant-binding proteins of Drosophila melanogaster: annotation and characterization of a divergent gene family. Gene292, 43–55 (2002). ArticleCAS Google Scholar
Hekmat-Scafe, D.S., Scafe, C.R., McKinney, A.J. & Tanouye, M.A. Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res.12, 1357–1369 (2002). ArticleCAS Google Scholar
Dominguez, M., Ferres-Marco, D., Gutierrez-Avino, F.J., Speicher, S.A. & Beneyto, M. Growth and specification of the eye are controlled independently by Eyegone and Eyeless in Drosophila melanogaster. Nat. Genet.36, 31–39 (2004). ArticleCAS Google Scholar
Aldaz, S., Morata, G. & Azpiazu, N. The Pax-homeobox gene eyegone is involved in the subdivision of the thorax of Drosophila. Development130, 4473–4482 (2003). ArticleCAS Google Scholar
Jimenez, F. et al. vnd, a gene required for early neurogenesis of Drosophila, encodes a homeodomain protein. EMBO J.14, 3487–3495 (1995). ArticleCAS Google Scholar
Robinson, D.N. & Cooley, L. Drosophila kelch is an oligomeric ring canal actin organizer. J. Cell Biol.138, 799–810 (1997). ArticleCAS Google Scholar
Bomont, P. et al. The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat. Genet.26, 370–374 (2000). ArticleCAS Google Scholar
Chien, S., Reiter, L.T., Bier, E. & Gribskov, M. Homophila: human disease gene cognates in Drosophila. Nucleic Acids Res.30, 149–151 (2002). ArticleCAS Google Scholar
Byers, D., Davis, R.L. & Kiger, J.A. Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature289, 79–81 (1981). ArticleCAS Google Scholar
Konopka, R.J. & Benzer, S. Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA68, 2112–2116 (1971). ArticleCAS Google Scholar
Salkoff, L. & Wyman, R. Genetic modification of potassium channels in Drosophila Shaker mutants. Nature293, 228–230 (1981). ArticleCAS Google Scholar
Dow, J.A.T. & Davies, S.A. The Malpighian tubule: rapid insights from post-genomic biology. J. Insect Physiol.52, 365–378 (2006). ArticleCAS Google Scholar
Yang, J. et al. A Drosophila systems approach to xenobiotic metabolism. Physiol. Genomics published online 8 May 2007 (doi:10.1152/physiolgenomics.00018.2007). ArticleCAS Google Scholar
McGettigan, J. et al. Insect renal tubules constitute a cell-autonomous immune system that protects the organism against bacterial infection. Insect Biochem. Mol. Biol.35, 741–754 (2005). ArticleCAS Google Scholar
Kaneko, T. et al. PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan. Nat. Immunol.7, 715–723 (2006). ArticleCAS Google Scholar
Davies, S.A. et al. Analysis and inactivation of vha55, the gene encoding the V-ATPase B-subunit in Drosophila melanogaster, reveals a larval lethal phenotype. J. Biol. Chem.271, 30677–30684 (1996). ArticleCAS Google Scholar
Allan, A.K., Du, J., Davies, S.A. & Dow, J.A.T. Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles. Physiol. Genomics22, 128–138 (2005). ArticleCAS Google Scholar
Karet, F.E. et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat. Genet.21, 84–90 (1999). ArticleCAS Google Scholar
Evans, J.M., Allan, A.K., Davies, S.A. & Dow, J.A.T. Sulphonylurea sensitivity and enriched expression implicate inward rectifier K+ channels in Drosophila melanogaster renal function. J. Exp. Biol.208, 3771–3783 (2005). ArticleCAS Google Scholar
Glassman, E. & Mitchell, H.K. Mutants of Drosophila melanogaster deficient in xanthine dehydrogenase. Genetics44, 153–162 (1959). CASPubMedPubMed Central Google Scholar
Dent, C.E. & Philpot, G.R. Xanthinuria: an inborn error of metabolism. Lancet263, 182–185 (1954). Article Google Scholar
Wang, J. et al. Function-informed transcriptome analysis of Drosophila renal tubule. Genome Biol.5, R69 (2004). Article Google Scholar
Dow, J.A.T. & Davies, S.A. Integrative physiology and functional genomics of epithelial function in a genetic model organism. Physiol. Rev.83, 687–729 (2003). ArticleCAS Google Scholar
Yang, Z., Edenberg, H.J. & Davis, R.L. Isolation of mRNA from specific tissues of Drosophila by mRNA tagging. Nucleic Acids Res.33, e148 (2005). Article Google Scholar
Manak, J.R. et al. Biological function of unannotated transcription during the early development of Drosophila melanogaster. Nat. Genet.38, 1151–1158 (2006). ArticleCAS Google Scholar