Retinopathy induced in mice by targeted disruption of the rhodopsin gene (original) (raw)

References

  1. Heckenlively, J.R. Retinitis Pigmentosa. 125–149 (J.B. Lippincott, Philadelphia, 1988).
  2. Pagon, R.A. Retinitis pigmentosa. Surv. Ophthalmol. 33, 137–177 (1988).
    Article CAS Google Scholar
  3. McWilliam, P. et al. Autosomal dominant retinitis pigmentosa: localization of an adRP gene to the long arm of chromosome 3. Genomics 5, 619–622 (1989).
    Article CAS Google Scholar
  4. Dryja, T.D. et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343, 364–366 (1990).
    Article CAS Google Scholar
  5. Humphries, P., Kenna, P. & Farrar, G.J. On the molecular genetics of retinitis pigmentosa. Science, 256, 804–808 (1992).
    Article CAS Google Scholar
  6. McLaughlin, M.E., Sandberg, M.A., Berson, E.L. & Dryja, T.P. Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nature Genet. 4, 130–133 (1993).
    Article CAS Google Scholar
  7. Dryja, T.P., Finn, J.T., Peng, Y.-W., McGee, T.L. & Berson, E.L. Mutations in the gene encoding the alpha-subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 92, 10177–10181 (1995).
    Article CAS Google Scholar
  8. Carter-Dawson, L.D. & LaVail, M.M. Rods and cones in the mouse retina I. Structural analysis using light and electron microscopy. J. Comp. Neurol. 188, 245–262 (1979).
    Article CAS Google Scholar
  9. Hicks, D. & Molday, R.S. Differential immunogold-dextran labeling of bovine and frog rod and cone cells using monoclonal antibodies against bovine rhodopsin. Exp. Eye Res. 42, 55–71 (1986).
    Article CAS Google Scholar
  10. Brown, K.T. The electroretinogram: Its components and their origins. Vision Res. 8, 633–677 (1968).
    Article CAS Google Scholar
  11. Steinberg, R.H., Frishman, L.J. & Sieving, A.P. Negative components of the electroretinogram from proximal retina and photoreceptor. in Progress in Retinal Research, Vol. 10 (eds Osborne, N. & Chader, G.) 121–160 (Pergamon, New York, 1991).
    Google Scholar
  12. Penn, R.D. & Hagins, W.A. Signal transmission along retinal rods and the origin of the a-wave. Nature 223, 201–205 (1969).
    Article CAS Google Scholar
  13. Stockton, R.A. & Slaughter, M.M. B-wave of the electroretinogram: a reflection of on bipolar cell activity. J. Gen. Physiol. 93, 101–122 (1989).
    Article CAS Google Scholar
  14. Sieving, P.A., Fishman, L.J. & Steinberg, R.H. Scotopic threshold response of proximal retina in cat. J. Neurophysiol. 56, 1049–1061 (1986).
    Article CAS Google Scholar
  15. Aguilar, M. & Stiles, W.S. Saturation of the rod mechanism of the retina at high levels of stimulation. Opt. Acta. 1, 59–63 (1954).
    Article Google Scholar
  16. Peachy, N.S. et al. Properties of the mouse cone-mediated electroretinogram during light adaptation. Neurosd. Lett. 162, 9–11 (1993).
    Article Google Scholar
  17. Sieving, P.A., Murayama, K. & Naarendorp, F. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Visual Neurosd. 11, 519–532 (1994).
    Article CAS Google Scholar
  18. Sieving, P.A. & Nino, C. Scotopic threshold response (SIR) of the human electroretinogram. Invest. Ophthalmol. VisualSd. 29, 1608–1614 (1988).
    CAS Google Scholar
  19. Bush, R.A. & Remé, C.E. Chronic lithium treatment induces reversible and irreversible changes in the rat ERG in vivo. Clin. Vision. Sd. 7, 393–401 (1992).
    Google Scholar
  20. Sieving, P.A. & Wakabayashi, K. Comparison of rod threshold ERG from monkey, cat and human. Clin. Vision. Sd. 6, 171–179 (1991).
    Google Scholar
  21. Bush, R.A., Hawks, K.W. & Sieving, P.A. Preservation of inner retinal responses in aged royal college of surgeons rat: evidence against glutamate excitotoxicity in photoreceptor degeneration. Invest. Ophthalmol. Visual Sci. 36, 2054–2062 (1995).
    CAS Google Scholar
  22. Green, D.G. Herreros de Tejada, P. & Glover, M.J. Electrophysiological estimates of visual sensitivity in albino and pigmented mice. Visual Neurosci. 11, 919–925 (1994).
    Article CAS Google Scholar
  23. Deng, C., Thomas, K.R. & Capecchi, M.R. Location of crossovers during gene targeting with insertion and replacement vectors. Mol. Cell. Biol. 13, 2134–2140 (1993).
    Article CAS Google Scholar
  24. Davis, A.P. & Capecchi, M.R. Axial homeosis and appendicular skeleton defects in mice with a targeted disruption of hoxd-11. Development 120, 2187–2198 (1994).
    CAS Google Scholar
  25. Mansour, S.M., Thomas, K.R. & Capecchi, M.R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).
    Article CAS Google Scholar
  26. Thomas, K.R. & Capecchi, M.R. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346, 847–850 (1990).
    Article CAS Google Scholar
  27. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning, 2nd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).

Download references