- Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
Article CAS Google Scholar
- Weiner, A.M., Deininger, P.L. & Efstratiadis, A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu. Rev. Biochem. 55, 631–661 (1986).
Article CAS Google Scholar
- Deininger, P.L. SINEs: short interspersed repeated DNA elements in higher eucaryotes. in Mobile DNA (eds. Berg, D.E. & Howe, M.M.) 619–636 (American Society for Microbiology Press, Washington, D.C., 1989).
Google Scholar
- Boeke, J.D. & Stoye, J.P. Retrotransposons, endogenous retroviruses, and the evolution of retroelements. in Retroviruses (eds. Coffin, J.M., Hughes, S.H. & Varmus, H.E.) 343–435 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1997).
Google Scholar
- Deininger, P.L. & Batzer, M.A. Mammalian retroelements. Genome Res. 12, 1455–1465 (2002).
Article CAS Google Scholar
- Weiner, A.M. SINEs and LINEs: the art of biting the hand that feeds you. Curr. Opin. Cell Biol. 14, 343–350 (2002).
Article CAS Google Scholar
- Schmid, C.W. Does SINE evolution preclude Alu function? Nucleic Acids Res. 26, 4541–4550 (1998).
Article CAS Google Scholar
- Rowold, D.J. & Herrera, R.J. Alu elements and the human genome. Genetica 108, 57–72 (2000).
Article CAS Google Scholar
- Batzer, M.A. & Deininger, P.L. Alu repeats and human genomic diversity. Nat. Rev. Genet. 3, 370–379 (2002).
Article CAS Google Scholar
- Weiner, A.M. An abundant cytoplasmic 7S RNA is complementary to the dominant interspersed middle repetitive DNA sequence family in the human genome. Cell 22, 209–218 (1980).
Article CAS Google Scholar
- Ullu, E. & Tschudi, C. Alu sequences are processed 7SL RNA genes. Nature 312, 171–172 (1984).
Article CAS Google Scholar
- Quentin, Y. Fusion of a free left Alu monomer and a free right Alu monomer at the origin of the Alu family in the primate genomes. Nucleic Acids Res. 20, 487–493 (1992).
Article CAS Google Scholar
- Sinnett, D., Richer, C., Deragon, J.M. & Labuda, D. Alu RNA secondary structure consists of two independent 7 SL RNA-like folding units. J. Biol. Chem. 266, 8675–8678 (1991).
CAS PubMed Google Scholar
- Bovia, F. & Strub, K. The signal recognition particle and related small cytoplasmic ribonucleoprotein particles. J. Cell. Sci. 109, 2601–2608 (1996).
CAS PubMed Google Scholar
- Deininger, P.L. & Batzer, M.A. Alu repeats and human disease. Mol. Genet. Metab. 67, 183–193 (1999).
Article CAS Google Scholar
- Kazazian, H.H.J. An estimated frequency of endogenous insertional mutations in human. Nat. Genet. 22, 130 (1999).
Article CAS Google Scholar
- Feng, Q., Moran, J.V., Kazazian, H.H. & Boeke, J.D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905–916 (1996).
Article CAS Google Scholar
- Cost, G.J. & Boeke, J.D. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 37, 18081–18093 (1998).
Article CAS Google Scholar
- Cost, G.J., Feng, Q., Jacquier, A. & Boeke, J.D. Human L1 element target-primed reverse transcription in vitro. EMBO J. 21, 5899–5910 (2002).
Article CAS Google Scholar
- Luan, D.D., Korman, M.H., Jakubczak, J.L. & Eickbush, T.H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72, 595–605 (1993).
Article CAS Google Scholar
- Jurka, J. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc. Natl. Acad. Sci. USA 94, 1872–1877 (1997).
Article CAS Google Scholar
- Esnault, C., Maestre, J. & Heidmann, T. Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 24, 363–367 (2000).
Article CAS Google Scholar
- Kajikawa, M. & Okada, N. LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell 111, 433–444 (2002).
Article CAS Google Scholar
- Esnault, C., Casella, J.F. & Heidmann, T. A Tetrahymena thermophila ribozyme-based indicator gene to detect transposition of marked retroelements in mammalian cells. Nucleic Acids Res. 30, e49 (2002).
Article Google Scholar
- Sisodia, S., Sollner-Webb, B. & Cleveland, D. Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation. Mol. Cell. Biol. 7, 3602–3612 (1987).
Article CAS Google Scholar
- Wallace, M.R. et al. A de novo Alu insertion results in neurofibromatosis type 1. Nature 353, 864–866 (1991).
Article CAS Google Scholar
- Ullu, E. & Weiner, A.M. Upstream sequences modulate the internal promoter of the human 7SL RNA gene. Nature 318, 371–374 (1985).
Article CAS Google Scholar
- Roy, A.M. et al. Upstream flanking sequences and transcription of SINEs. J. Mol. Biol. 302, 17–25 (2000).
Article CAS Google Scholar
- Wei, W. et al. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol. 21, 1429–1439 (2001).
Article CAS Google Scholar
- Moran, J.V. et al. High frequency retroposition in cultured mammalian cells. Cell 87, 917–927 (1996).
Article CAS Google Scholar
- Jensen, S. & Heidmann, T. An indicator gene for detection of germline retrotransposition in transgenic Drosophila demonstrates RNA-mediated transposition of the LINE I element. EMBO J. 10, 1927–1937 (1991).
Article CAS Google Scholar
- Moran, J.V., DeBerardinis, R.J. & Kazazian, H.H. Jr. Exon shuffling by L1 retrotransposition. Science 283, 1530–1534 (1999).
Article CAS Google Scholar
- Morrish, T.A. et al. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat. Genet. 31, 159–165 (2002).
Article CAS Google Scholar
- Chaboissier, M.C., Finnegan, D. & Bucheton, A. Retrotransposition of the I factor, a non-long terminal repeat retrotransposon of Drosophila, generates tandem repeats at the 3′ end. Nucleic Acids Res. 28, 2467–2472 (2000).
Article CAS Google Scholar
- Roy-Engel, A.M. et al. Active Alu element “A-tails”: size does matter. Genome Res. 12, 1333–1344 (2002).
Article CAS Google Scholar
- Martin, S.L. & Bushman, F.D. Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol. Cell. Biol. 21, 467–475 (2001).
Article CAS Google Scholar
- Kolosha, V.O. & Martin, S.L. High-affinity, non-sequence-specific RNA binding by the open reading frame 1 (ORF1) protein from long interspersed nuclear element 1 (LINE-1). J. Biol. Chem. 278, 8112–8117 (2003).
Article CAS Google Scholar
- Martin, S.L. Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol. Cell. Biol. 11, 4804–4807 (1991).
Article CAS Google Scholar
- Hohjoh, H. & Singer, M. Cytolasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J. 15, 630–639 (1996).
Article CAS Google Scholar
- Sarrowa, J., Chang, D.Y. & Maraia, R.J. The decline in human Alu retroposition was accompanied by an asymmetric decrease in SRP9/14 binding to dimeric Alu RNA and increased expression of small cytoplasmic Alu RNA. Mol. Cell. Biol. 17, 1144–1151 (1997).
Article CAS Google Scholar
- Muddashetty, R. et al. Poly(A)-binding protein is associated with neuronal BC1 and BC200 ribonucleoprotein particles. J. Mol. Biol. 321, 433–445 (2002).
Article CAS Google Scholar
- West, N., Roy-Engel, A.M., Imataka, H., Sonenberg, N. & Deininger, P. Shared protein components of SINE RNPs. J. Mol. Biol. 321, 423–432 (2002).
Article CAS Google Scholar
- Boeke, J.D. LINEs and Alu—the poly(A) connection. Nat. Genet. 16, 6–7 (1997).
Article CAS Google Scholar
- Bovia, F., Fornallaz, M., Leffers, H. & Strub, K. The SRP9/14 subunit of the signal recognition particle (SRP) is present in more than 20-fold excess over SRP in primate cells and exists primarily free but also in complex with small cytoplasmic Alu RNAs. Mol. Biol. Cell. 6, 471–484 (1995).
Article CAS Google Scholar
- Chang, D.Y., Sasaki-Tozawa, N., Green, L.K. & Maraia, R.J. A trinucleotide repeat-associated increase in the level of Alu RNA-binding protein occurred during the same period as the major Alu amplification that accompanied anthropoid evolution. Mol. Cell. Biol. 15, 2109–2116 (1995).
Article CAS Google Scholar
- Willoughby, D.A., Vilalta, A. & Oshima, R.G. An Alu element from the K18 gene confers position-independent expression in transgenic mice. J. Biol. Chem. 275, 759–768 (2000).
Article CAS Google Scholar
- Kimberland, M.L. et al. Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. Hum. Mol. Genet. 8, 1557–1560 (1999).
Article CAS Google Scholar
- Heidmann, O. & Heidmann, T. Retrotransposition of a mouse IAP sequence tagged with an indicator gene. Cell 64, 159–170 (1991).
Article CAS Google Scholar
- Tchénio, T. & Heidmann, T. The dimerization/packaging sequence is dispensable for both the formation of high-molecular-weight RNA complexes within retroviral particles and the synthesis of proviruses of normal structure. J. Virol. 69, 1079–1084 (1995).
PubMed PubMed Central Google Scholar