From sequence to phenotype: reverse genetics in drosophila melanogaster (original) (raw)
St Johnston, R. D. The art and design of genetic screens: Drosophila melanogaster. Nature Rev. Genet.3, 176–188 (2002). ArticleCASPubMed Google Scholar
Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science287, 2185–2196 (2000). PubMed Google Scholar
Lewis, E. B. & Bacher, F. Method for feeding ethyl-methane sulfonate (EMS) to Drosophila males. Drosoph. Inf. Serv.43, 193 (1968). Google Scholar
Pastink, A., Heemskerk, E., Nivard, M., Van Vliet, C. & Vogel, E. Mutational specificity of ethyl methanesulfonate in excision-repair-proficient and -deficient strains of Drosophila melanogaster. Mol. Gen. Genet.229, 213–218 (1991). ArticleCASPubMed Google Scholar
Bentley, A., MacLennan, B., Calvo, J. & Dearolf, C. Targeted recovery of mutations in Drosophila. Genetics156, 1169–1173 (2000).This paper describes the use of DHPLC to screen forde novomutations in a specific gene of interest inDrosophila, after EMS mutagenesis. CASPubMedPubMed Central Google Scholar
Taylor, G. M. (ed.) Laboratory Methods for the Detection of Mutations and Polymorphisms in DNA 352 (CRC Press, Boca Raton, Florida, 1997). Google Scholar
Underhill, P. A., Jin, L., Zemans, R., Oefner, P. J. & Cavalli-Sforza, L. L. A pre-Columbian Y chromosome-specific transition and its implications for human evolutionary history. Proc. Natl Acad. Sci. USA93, 196–200 (1996). ArticleCASPubMedPubMed Central Google Scholar
Timmons, L., Xu, J., Hersperger, G., Deng, X. F. & Shearn, A. Point mutations in awdKpn which revert the prune/Killer of prune lethal interaction affect conserved residues that are involved in nucleoside diphosphate kinase substrate binding and catalysis. J. Biol. Chem.270, 23021–23030 (1995). ArticleCASPubMed Google Scholar
Huang, S. L. & Baker, B. S. The mutability of the minute loci of Drosophila melanogaster with ethyl methanesulfonate. Mutat. Res.34, 407–414 (1976). ArticleCASPubMed Google Scholar
Spradling, A. C. et al. The Berkeley Drosophila Genome Project Gene Disruption Project: single _P_-element insertions mutating 25% of vital Drosophila genes. Genetics153, 135–177 (1999).A description of the strategy and progress of the Gene Disruption Project. This paper focuses on lethal insertions that were selected in the early phases of the project. CASPubMedPubMed Central Google Scholar
Bier, E. et al. Searching for pattern and mutation in the Drosophila genome with P-lacZ vector. Genes Dev.3, 1273–1287 (1989). ArticleCASPubMed Google Scholar
Spradling, A. C. et al. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc. Natl Acad. Sci. USA92, 10824–10830 (1995). ArticleCASPubMedPubMed Central Google Scholar
Rubin, G. M. & Spradling, A. C. Genetic transformation of Drosophila with transposable element vectors. Science218, 348–353 (1982). ArticleCASPubMed Google Scholar
Rørth, P. et al. Systematic gain-of-function genetics in Drosophila. Development125, 1049–1057 (1998). PubMed Google Scholar
Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development118, 401–415 (1993). CASPubMed Google Scholar
Lukacsovich, T. et al. Dual-tagging gene trap of novel genes in Drosophila melanogaster. Genetics157, 727–742 (2001). CASPubMedPubMed Central Google Scholar
Roseman, R. R. et al. A P element containing suppressor of Hairy-wing binding regions has novel properties for mutagenesis in Drosophila melanogaster. Genetics141, 1061–1074 (1995). CASPubMedPubMed Central Google Scholar
Roseman, R. R., Pirrotta, V. & Geyer, P. K. The Su(Hw) protein insulates the expression of the Drosophila melanogaster white gene from chromosomal position-effects. EMBO J.12, 435–442 (1993). ArticleCASPubMedPubMed Central Google Scholar
Geyer, P. K., Spana, C. & Corces, V. G. On the molecular mechanism of _gypsy_-induced mutations at the yellow locus of Drosophila melanogaster. EMBO J.5, 2657–2662 (1986). ArticleCASPubMedPubMed Central Google Scholar
Zhang, P. & Spradling, A. C. Efficient and dispersed local P element transposition from Drosophila females. Genetics133, 361–373 (1993). CASPubMedPubMed Central Google Scholar
Pereira, A., Doshen, J., Tanaka, E. & Goldstein, L. S. Genetic analysis of a Drosophila microtubule-associated protein. J. Cell Biol.116, 377–383 (1992). ArticleCASPubMed Google Scholar
Dalby, B., Pereira, A. J. & Goldstein, L. S. B. An inverse PCR screen for the detection of P element insertions in cloned genomic intervals in Drosophila melanogaster. Genetics139, 757–766 (1995). CASPubMedPubMed Central Google Scholar
Voelker, R. A. et al. Frequent imprecise excision among reversions of a P element-caused lethal mutation in Drosophila. Genetics107, 279–294 (1984). CASPubMedPubMed Central Google Scholar
Daniels, S. B., McCarron, M. Y., Love, C. & Chovnick, A. Dysgenesis-induced instability of rosy locus transformation in Drosophila melanogaster: analysis of excision events and the selective recovery of control element deletions. Genetics109, 95–117 (1985). CASPubMedPubMed Central Google Scholar
Engels, W. R., Johnson-Schlitz, D. M., Eggleston, W. B. & Sved, J. High-frequency P element loss in Drosophila is homolog dependent. Cell62, 515–525 (1990). ArticleCASPubMed Google Scholar
Stavely, B. E., Heslip, T. R., Hodgetts, R. B. & Bell, J. B. Protected _P_-element termini suggest a role for inverted repeat-binding protein in transposase-induced gap repair in Drosophila melanogaster. Genetics139, 1321–1329 (1995). Google Scholar
Mihaly, J., Hogga, I., Gausz, J., Gyurkovics, H. & Karch, F. In situ dissection of the Fab-7 region of the bithorax complex into a chromatin domain boundary and a _Polycomb_-response element. Development124, 1809–1820 (1997). CASPubMed Google Scholar
Suzanne, M. et al. The Drosophila p38 MAPK pathway is required during oogenesis for egg asymmetric development. Genes Dev.13, 1464–1474 (1999). ArticleCASPubMedPubMed Central Google Scholar
Cayirlioglu, P., Bonnette, P. C., Dickson, M. R. & Duronio, R. J. Drosophila E2f2 promotes the conversion from genomic DNA replication to gene amplification in ovarian follicle cells. Development128, 5085–5098 (2001). CASPubMed Google Scholar
Gloor, G. B., Nassif, N. A., Johnson-Schlitz, D. M., Preston, C. R. & Engels, W. R. Targeted gene replacement in Drosophila via P element-induced gap repair. Science253, 1110–1117 (1991).This is the paper that introduced the use of an ectopic template inP-element gap repair, which makes gene replacement possible. ArticleCASPubMed Google Scholar
Keeler, K. J., Dray, T., Penney, J. E. & Gloor, G. B. Gene targeting of a plasmid-borne sequence to a double-strand DNA break in Drosophila melanogaster. Mol. Cell. Biol.16, 522–528 (1996). ArticleCASPubMedPubMed Central Google Scholar
Lankenau, D. H. & Gloor, G. B. In vivo gap repair in Drosophila: a one-way street with many destinations. Bioessays20, 317–327 (1998). ArticleCASPubMed Google Scholar
Geyer, P. K., Richardson, K. L., Corces, V. G. & Green, M. M. Genetic instability in Drosophila melanogaster: _P_-element mutagenesis by gene conversion. Proc. Natl Acad. Sci. USA85, 6455–6459 (1988). ArticleCASPubMedPubMed Central Google Scholar
Heslip, T. R. & Hodgetts, R. B. Targeted transposition at the vestigial locus of Drosophila melanogaster. Genetics138, 1127–1135 (1994). CASPubMedPubMed Central Google Scholar
Gonzy-Treboul, G., Lepesant, J. & Deutsch, J. Enhancer-trap targeting at the Broad-Complex locus of Drosophila melanogaster. Genes Dev.9, 1137–1148 (1995). ArticleCASPubMed Google Scholar
Gray, Y. H. M., Tanaka, M. M. & Sved, J. A. _P_-element-induced recombination in Drosophila melanogaster: hybrid element insertion. Genetics144, 1601–1610 (1996). CASPubMedPubMed Central Google Scholar
Preston, C. R. & Engels, W. R. Flanking duplications and deletions associated with _P_-induced male recombination in Drosophila. Genetics144, 1623–1638 (1996). CASPubMedPubMed Central Google Scholar
Chen, B., Chu, T., Harms, E., Gergen, J. & Strickland, S. Mapping of Drosophila mutations using site-specific male recombination. Genetics149, 157–163 (1998). CASPubMedPubMed Central Google Scholar
McKim, K. S. & Hayashi-Hagihara, A. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev.12, 2932–2942 (1998). ArticleCASPubMedPubMed Central Google Scholar
Rong, Y. S. & Golic, K. G. Gene targeting by homologous recombination in Drosophila. Science288, 2013–2018 (2000).This paper shows the use of the strategy for gene targeting in which the linear DNA-targeting molecule is generatedin vivousing Flp recombinase and the restriction enzymeI-SceI. ArticleCASPubMed Google Scholar
Rong, Y. S. & Golic, K. G. A targeted gene knockout in Drosophila. Genetics157, 1307–1312 (2001).In a follow-up to their 2000 publication (reference43), the authors show that their strategy can be used to do gene replacement without previous knowledge of mutant phenotypes. CASPubMedPubMed Central Google Scholar
Ivanov, E. L. & Haber, J. E. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol. Cell. Biol.15, 2245–2251 (1995). ArticleCASPubMedPubMed Central Google Scholar
Spradling, A. C. & Rubin, G. M. The effect of chromosomal position on the expression of the Drosophila xanthine dehrydrogenase gene. Cell34, 47–57 (1983). ArticleCASPubMed Google Scholar
Hazelrigg, T., Levis, R. W. & Rubin, G. R. Transformation of white locus DNA in Drosophila: dosage compensation, zeste interaction, and position effects. Cell36, 469–481 (1984). ArticleCASPubMed Google Scholar
Wakimoto, B. T., Kalfayan, L. J. & Spradling, A. C. Developmentally regulated expression of Drosophila chorion genes introduced at diverse chromosomal positions. J. Mol. Biol.187, 33–45 (1986). ArticleCASPubMed Google Scholar
Hammond, S. M., Caudy, A. & Hannon, G. J. Post-transcriptional gene silencing by double-stranded RNA. Nature Rev. Genet.2, 110–119 (2001). ArticleCASPubMed Google Scholar
Yang, D., Lu, H. & Erickson, J. W. Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr. Biol.10, 1191–1200 (2000). ArticleCASPubMed Google Scholar
Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell101, 25–33 (2000). ArticleCASPubMed Google Scholar
Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science294, 858–862 (2001). ArticleCASPubMed Google Scholar
Lee, R. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science294, 862–864 (2001). ArticleCASPubMed Google Scholar
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391, 806–811 (1998).The landmark discovery of RNAi as a genetic tool. ArticleCASPubMed Google Scholar
Clemens, J. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl Acad. Sci. USA97, 6499–6503 (2000). ArticleCASPubMedPubMed Central Google Scholar
Adams, R. R., Maiato, H., Earnshaw, W. C. & Carmena, M. Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J. Cell Biol.153, 865–880 (2001). ArticleCASPubMedPubMed Central Google Scholar
Giet, R. & Glover, D. M. Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol.152, 669–682 (2001). ArticleCASPubMedPubMed Central Google Scholar
Caplen, N., Fleenor, J., Fire, A. & Morgan, R. dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene252, 95–105 (2000). ArticleCASPubMed Google Scholar
Misquitta, L. & Paterson, B. Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): a role for nautilus in embryonic somatic muscle formation. Proc. Natl Acad. Sci. USA96, 1451–1456 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kennerdell, J. R. & Carthew, R. W. HeriTable gene silencing in Drosophila using double-stranded RNA. Nature Biotechnol.18, 896–898 (2000).Injection of dsRNA intoDrosophilaembryos is shown to specifically phenocopy mutations. ArticleCAS Google Scholar
Lam, G. & Thummel, C. S. Inducible expression of double-stranded RNA directs specific genetic interference in Drosophila. Curr. Biol.10, 957–963 (2000). ArticleCASPubMed Google Scholar
Piccin, A. et al. Efficient and heriTable functional knock-out of an adult phenotype in Drosophila using a GAL4-driven hairpin RNA incorporating a heterologous spacer. Nucleic Acids Res.29, E55–5 (2001). ArticleCASPubMedPubMed Central Google Scholar
Warren, G. & Green, R. Comparison of physical and genetic properties of palindromic DNA sequences. J. Bacteriol.161, 1103–1111 (1985). CASPubMedPubMed Central Google Scholar
Fortier, E. & Belote, J. Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis26, 240–244 (2000). ArticleCASPubMed Google Scholar
Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science285, 901–906 (1999). ArticleCASPubMed Google Scholar
Fraser, A. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature408, 325–330 (2000). ArticleCASPubMed Google Scholar
Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature408, 331–336 (2000). ArticleCASPubMed Google Scholar
Piano, F., Schetter, A., Mangone, M., Stein, L. & Kemphues, K. RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Curr. Biol.10, 1619–1622 (2000). ArticleCASPubMed Google Scholar
Maeda, I., Kohara, Y., Yamamoto, M. & Sugimoto, A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr. Biol.11, 171–176 (2001). ArticleCASPubMed Google Scholar
Mullins, M., Rio, D. C. & Rubin, G. M. _Cis_-acting DNA sequence requirements for _P_-element transposition. Genes Dev.3, 729–738 (1989). ArticleCASPubMed Google Scholar
Kaufman, P. D. & Rio, D. C. P element transposition in vitro proceeds by a cut-and-paste mechanism and uses GTP as a cofactor. Cell69, 27–39 (1992). ArticleCASPubMed Google Scholar
Smith, D., Wohlgemuth, J., Calvi, B. R., Franklin, I. & Gelbart, W. M. hobo enhancer trapping mutagenesis in Drosophila reveals an insertion specificity different from P elements. Genetics135, 1063–1076 (1993). CASPubMedPubMed Central Google Scholar
Horn, C. & Wimmer, E. A versatile vector set for animal transgenesis. Dev. Genes Evol.210, 630–637 (2000). ArticleCASPubMed Google Scholar
Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature404, 293–296 (2000). ArticleCASPubMed Google Scholar