The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells (original) (raw)
Cheng, J. et al. Hematopoietic defects in mice lacking the sialomucin CD34. Blood87, 479–490 (1996). CASPubMed Google Scholar
Antonchuk, J., Hyland, C.D., Hilton, D.J. & Alexander, W.S. Synergistic effects on erythropoiesis, thrombopoiesis, and stem cell competitiveness in mice deficient in thrombopoietin and steel factor receptors. Blood104, 1306–1313 (2004). ArticleCASPubMed Google Scholar
Ballmaier, M. et al. c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood97, 139–146 (2001). ArticleCASPubMed Google Scholar
Ihara, K. et al. Identification of mutations in the c-mpl gene in congenital amegakaryocytic thrombocytopenia. Proc. Natl. Acad. Sci. USA96, 3132–3136 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kimura, S., Roberts, A.W., Metcalf, D. & Alexander, W.S. Hematopoietic stem cell deficiencies in mice lacking c-Mpl, the receptor for thrombopoietin. Proc. Natl. Acad. Sci. USA95, 1195–1200 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hrabe de Angelis, M.H. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat. Genet.25, 444–447 (2000). ArticleCASPubMed Google Scholar
Kile, B.T. et al. Functional genetic analysis of mouse chromosome 11. Nature425, 81–86 (2003). ArticleCASPubMed Google Scholar
Nelms, K.A. & Goodnow, C.C. Genome-wide ENU mutagenesis to reveal immune regulators. Immunity15, 409–418 (2001). ArticleCASPubMed Google Scholar
Nolan, P.M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat. Genet.25, 440–443 (2000). ArticleCASPubMed Google Scholar
Duterque-Coquillaud, M., Niel, C., Plaza, S. & Stehelin, D. New human erg isoforms generated by alternative splicing are transcriptional activators. Oncogene8, 1865–1873 (1993). CASPubMed Google Scholar
Shimizu, K. et al. An ets-related gene, ERG, is rearranged in human myeloid leukemia with t(16;21) chromosomal translocation. Proc. Natl. Acad. Sci. USA90, 10280–10284 (1993). ArticleCASPubMedPubMed Central Google Scholar
Sorensen, P.H. et al. A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat. Genet.6, 146–151 (1994). ArticleCASPubMed Google Scholar
Baldus, C.D. et al. Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21: Amplification discloses overexpression of APP, ETS2, and ERG genes. Proc. Natl. Acad. Sci. USA101, 3915–3920 (2004). ArticleCASPubMedPubMed Central Google Scholar
Marcucci, G. et al. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J. Clin. Oncol.23, 9234–9242 (2005). ArticleCASPubMed Google Scholar
Mullighan, C.G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature446, 758–764 (2007). ArticleCASPubMed Google Scholar
Tomlins, S.A. et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature448, 595–599 (2007). ArticleCASPubMed Google Scholar
Tomlins, S.A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science310, 644–648 (2005). ArticleCASPubMed Google Scholar
Alexander, W.S., Roberts, A.W., Nicola, N.A., Li, R. & Metcalf, D. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood87, 2162–2170 (1996). CASPubMed Google Scholar
Reddy, E.S. & Rao, V.N. Erg, an ets-related gene, codes for sequence-specific transcriptional activators. Oncogene6, 2285–2289 (1991). CASPubMed Google Scholar
Liang, H. et al. Solution structure of the ets domain of Fli-1 when bound to DNA. Nat. Struct. Biol.1, 871–875 (1994). ArticleCASPubMed Google Scholar
Andersson, L.C., Nilsson, K. & Gahmberg, C.G. K562–a human erythroleukemic cell line. Int. J. Cancer23, 143–147 (1979). ArticleCASPubMed Google Scholar
Rainis, L. et al. The proto-oncogene ERG in megakaryoblastic leukemias. Cancer Res.65, 7596–7602 (2005). ArticleCASPubMed Google Scholar
Carrere, S., Verger, A., Flourens, A., Stehelin, D. & Duterque-Coquillaud, M. Erg proteins, transcription factors of the Ets family, form homo, heterodimers and ternary complexes via two distinct domains. Oncogene16, 3261–3268 (1998). ArticleCASPubMed Google Scholar
Spyropoulos, D.D. et al. Hemorrhage, impaired hematopoiesis, and lethality in mouse embryos carrying a targeted disruption of the Fli1 transcription factor. Mol. Cell. Biol.20, 5643–5652 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hart, A. et al. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity13, 167–177 (2000). ArticleCASPubMed Google Scholar
Loder, F. et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med.190, 75–89 (1999). ArticleCASPubMedPubMed Central Google Scholar
Anderson, M.K., Hernandez-Hoyos, G., Diamond, R.A. & Rothenberg, E.V. Precise developmental regulation of Ets family transcription factors during specification and commitment to the T cell lineage. Development126, 3131–3148 (1999). CASPubMed Google Scholar
Okada, S. et al. In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood80, 3044–3050 (1992). CASPubMed Google Scholar
Kiel, M.J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell121, 1109–1121 (2005). ArticleCASPubMed Google Scholar
Yang, L. et al. Identification of Lin−Sca1+kit+CD34+Flt3− short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood105, 2717–2723 (2005). ArticleCASPubMed Google Scholar
Buttice, G. et al. Erg, an Ets-family member, differentially regulates human collagenase1 (MMP1) and stromelysin1 (MMP3) gene expression by physically interacting with the Fos/Jun complex. Oncogene13, 2297–2306 (1996). CASPubMed Google Scholar
McLaughlin, F. et al. Combined genomic and antisense analysis reveals that the transcription factor Erg is implicated in endothelial cell differentiation. Blood98, 3332–3339 (2001). ArticleCASPubMed Google Scholar
Pimanda, J.E. et al. Endoglin expression in the endothelium is regulated by Fli-1, Erg, and Elf-1 acting on the promoter and a -8-kb enhancer. Blood107, 4737–4745 (2006). ArticleCASPubMed Google Scholar
Forsberg, E.C. et al. Differential expression of novel potential regulators in hematopoietic stem cells. PLoS Genet.1, e28 (2005). ArticlePubMedPubMed Central Google Scholar
Bryder, D., Rossi, D.J. & Weissman, I.L. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am. J. Pathol.169, 338–346 (2006). ArticleCASPubMedPubMed Central Google Scholar
Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G. & Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell84, 321–330 (1996). ArticleCASPubMed Google Scholar
Nottingham, W.T. et al. Runx1-mediated hematopoietic stem cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood110, 4188–4197 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hollenhorst, P.C., Shah, A.A., Hopkins, C. & Graves, B.J. Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes Dev.21, 1882–1894 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ichikawa, M. et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat. Med.10, 299–304 (2004). ArticleCASPubMed Google Scholar
Pimanda, J.E. et al. Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proc. Natl. Acad. Sci. USA104, 17692–17697 (2007). ArticleCASPubMedPubMed Central Google Scholar
Robb, L. et al. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc. Natl. Acad. Sci. USA92, 7075–7079 (1995). ArticleCASPubMedPubMed Central Google Scholar
Shivdasani, R.A., Mayer, E.L. & Orkin, S.H. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature373, 432–434 (1995). ArticleCASPubMed Google Scholar
Porcher, C. et al. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell86, 47–57 (1996). ArticleCASPubMed Google Scholar
Mikkola, H.K. et al. Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature421, 547–551 (2003). ArticleCASPubMed Google Scholar
Hitzler, J.K. & Zipursky, A. Origins of leukaemia in children with Down syndrome. Nat. Rev. Cancer5, 11–20 (2005). ArticleCASPubMed Google Scholar
Hitzler, J.K., Cheung, J., Li, Y., Scherer, S.W. & Zipursky, A. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood101, 4301–4304 (2003). ArticleCASPubMed Google Scholar
Mundschau, G. et al. Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood101, 4298–4300 (2003). ArticleCASPubMed Google Scholar
Wechsler, J. et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat. Genet.32, 148–152 (2002). ArticleCASPubMed Google Scholar
Miyoshi, H. et al. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl. Acad. Sci. USA88, 10431–10434 (1991). ArticleCASPubMedPubMed Central Google Scholar
Kirsammer, G. et al. Highly penetrant myeloproliferative disease in the Ts65Dn mouse model of Down syndrome. Blood111, 767–775 (2007). ArticlePubMed Google Scholar
Bode, V.C. Ethylnitrosourea mutagenesis and the isolation of mutant alleles for specific genes located in the T region of mouse chromosome 17. Genetics108, 457–470 (1984). CASPubMedPubMed Central Google Scholar
O'Reilly, L.A. et al. Tissue expression and subcellular localization of the pro-survival molecule Bcl-w. Cell Death Differ.8, 486–494 (2001). ArticleCASPubMed Google Scholar
Alexander, W.S., Metcalf, D. & Dunn, A.R. Point mutations within a dimer interface homology domain of c-Mpl induce constitutive receptor activity and tumorigenicity. EMBO J.14, 5569–5578 (1995). ArticleCASPubMedPubMed Central Google Scholar
Darzynkiewicz, Z., Juan, G. & Srour, E. in Current Protocols in Cytometry. (ed. Robinson, J.P.) 7.3.1–7.3.16 (John Wiley and Sons, Hoboken, NJ, 2004). Google Scholar
Voss, A.K., Thomas, T. & Gruss, P. Mice lacking HSP90β fail to develop a placental labyrinth. Development127, 1–11 (2000). CASPubMed Google Scholar
Ma, Q., Chen, Z., del Barco Barrantes, I., de la Pompa, J.L. & Anderson, D.J. neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron20, 469–482 (1998). ArticleCASPubMed Google Scholar
Lin, S.M., Du, P., Huber, W. & Kibbe, W.A. Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res.36, e11 (2008). ArticlePubMedPubMed Central Google Scholar
Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol.3 Issue 1, Article 3 (2004). Article Google Scholar