Origins of leukaemia in children with Down syndrome (original) (raw)
Ross, J. A., Spector, L. G., Robison, L. L. & Olshan, A. F. Epidemiology of leukemia in children with Down syndrome. Pediatr. Blood Cancer44, 8–12 (2005) ArticlePubMed Google Scholar
Fong, C. T. & Brodeur, G. M. Down's syndrome and leukemia: epidemiology, genetics, cytogenetics and mechanisms of leukemogenesis. Cancer Genet. Cytogenet.28, 55–76 (1987). ArticleCASPubMed Google Scholar
Avet-Loiseau, H., Mechinaud, F. & Harousseau, J. L. Clonal hematologic disorders in Down syndrome. A review. J. Pediatr. Hematol. Oncol.17, 19–24 (1995). ArticleCASPubMed Google Scholar
Hasle, H., Clemmensen, I. H. & Mikkelsen, M. Risks of leukaemia and solid tumours in individuals with Down's syndrome. Lancet355, 165–169 (2000). Population-based overview of the frequencies of leukaemic and non-leukaemic malignant disorders in DS highlighting the association with an increased risk of leukaemia and a decreased incidence of solid tumours. ArticleCASPubMed Google Scholar
Hasle, H. Pattern of malignant disorders in individuals with Down's syndrome. Lancet Oncol.2, 429–436 (2001). ArticleCASPubMed Google Scholar
Bennett, J. M. et al. Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French–American–British Cooperative Group. Ann. Intern. Med.103, 460–462 (1985). ArticleCASPubMed Google Scholar
Zipursky, A., Poon, A. & Doyle, J. Leukemia in Down syndrome: a review. Pediatr. Hematol. Oncol.9, 139–149 (1992). ArticleCASPubMed Google Scholar
Wechsler, J. et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nature Genet.32, 148–152 (2002). First demonstration that somatic mutations ofGATA1resulting in the expression of a mutant protein truncated at the amino terminus are specific for AMKL of DS. ArticleCASPubMed Google Scholar
Lange, B. J. et al. Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: Children's Cancer Group Studies 2861 and 2891. Blood91, 608–615 (1998). CASPubMed Google Scholar
Zipursky, A., Thorner, P., De Harven, E., Christensen, H. & Doyle, J. Myelodysplasia and acute megakaryoblastic leukemia in Down's syndrome. Leuk. Res.18, 163–171 (1994). ArticleCASPubMed Google Scholar
Zipursky, A. Transient leukaemia — a benign form of leukaemia in newborn infants with trisomy 21. Br. J. Haematol.120, 930–938 (2003). Recent review of the clinical, cellular and molecular features of TL as a unique reversible disorder that precedes AMKL in DS. ArticlePubMed Google Scholar
Kurahashi, H. et al. Monoclonal nature of transient abnormal myelopoiesis in Down's syndrome. Blood77, 1161–1163 (1991). ArticleCASPubMed Google Scholar
Miyashita, T. et al. Clonal analysis of transient myeloproliferative disorder in Down's syndrome. Leukemia5, 56–59 (1991). CASPubMed Google Scholar
Shimada, A. et al. Fetal origin of the GATA1 mutation in identical twins with transient myeloproliferative disorder and acute megakaryoblastic leukemia accompanying Down syndrome. Blood103, 366 (2004). ArticleCASPubMed Google Scholar
Al-Kasim, F., Doyle, J. J., Massey, G. V., Weinstein, H. J. & Zipursky, A. Incidence and treatment of potentially lethal diseases in transient leukemia of Down syndrome: Pediatric Oncology Group Study. J. Pediatr. Hematol. Oncol.24, 9–13 (2002). ArticlePubMed Google Scholar
Dormann, S. et al. Life-threatening complications of transient abnormal myelopoiesis in neonates with Down syndrome. Eur. J. Pediatr.163, 374–377 (2004). ArticleCASPubMed Google Scholar
Tchernia, G. et al. Erythroblastic and/or megakaryoblastic leukemia in Down syndrome: treatment with low-dose arabinosyl cytosine. J. Pediatr. Hematol. Oncol.18, 59–62 (1996). ArticleCASPubMed Google Scholar
Zipursky, A., Rose, T., Skidmore, M., Thorner, P. & Doyle, J. Hydrops fetalis and neonatal leukemia in Down syndrome. Pediatr. Hematol. Oncol.13, 81–87 (1996). ArticleCASPubMed Google Scholar
Miyauchi, J., Ito, Y., Kawano, T., Tsunematsu, Y. & Shimizu, K. Unusual diffuse liver fibrosis accompanying transient myeloproliferative disorder in Down's syndrome: a report of four autopsy cases and proposal of a hypothesis. Blood80, 1521–1527 (1992). ArticleCASPubMed Google Scholar
Gamis, A. S. & Hilden, J. M. Transient myeloproliferative disorder, a disorder with too few data and many unanswered questions: does it contain an important piece of the puzzle to understanding hematopoiesis and acute myelogenous leukemia? J. Pediatr. Hematol. Oncol.24, 2–5 (2002). ArticlePubMed Google Scholar
Clark, S., Nathan, D. G. & Sieff, C. in Nathan and Oski's Hematology of Infancy and Childhood 6th edn (eds Nathan, D., Orkin, S., Ginsburg, D. & Look, A.) 171–255 (2003). Google Scholar
Israels, S. J., Rand, M. L. & Michelson, A. D. Neonatal platelet function. Semin. Thromb. Hemost.29, 363–372 (2003). ArticleCASPubMed Google Scholar
Ma, S. K., Lee, A. C., Wan, T. S., Lam, C. K. & Chan, L. C. Trisomy 8 as a secondary genetic change in acute megakaryoblastic leukemia associated with Down's syndrome. Leukemia13, 491–492 (1999). ArticleCASPubMed Google Scholar
Duflos-Delaplace, D. et al. Transient leukemoid disorder in a newborn with Down syndrome followed 19 months later by an acute myeloid leukemia: demonstration of the same structural change in both instances with clonal evolution. Cancer Genet. Cytogenet.113, 166–171 (1999). ArticleCASPubMed Google Scholar
Polski, J. M. et al. Acute megakaryoblastic leukemia after transient myeloproliferative disorder with clonal karyotype evolution in a phenotypically normal neonate. J. Pediatr. Hematol. Oncol.24, 50–54 (2002). ArticlePubMed Google Scholar
Hayashi, Y. et al. Cytogenetic findings and clinical features in acute leukemia and transient myeloproliferative disorder in Down's syndrome. Blood72, 15–23 (1988). ArticleCASPubMed Google Scholar
Ahmed, M. et al. Natural history of GATA1 mutations in Down Syndrome. Blood103, 2480–2489 (2004). ArticleCASPubMed Google Scholar
Zipursky, A., Christensen, H. & De Harven, E. Ultrastructural studies of the megakaryoblastic leukemias of Down syndrome. Leuk. Lymphoma18, 341–347 (1995). ArticleCASPubMed Google Scholar
Eguchi, M. et al. Ultrastructural and ultracytochemical differences between transient myeloproliferative disorder and megakaryoblastic leukaemia in Down's syndrome. Br. J. Haematol.73, 315–322 (1989). ArticleCASPubMed Google Scholar
Slordahl, S. H. et al. Leukemic blasts with markers of four cell lineages in Down's syndrome ('megakaryoblastic leukemia'). Med. Pediatr. Oncol.21, 254–258 (1993). ArticleCASPubMed Google Scholar
Bozner, P. Transient myeloproliferative disorder with erythroid differentiation in Down syndrome. Arch. Pathol. Lab. Med.126, 474–477 (2002). ArticlePubMed Google Scholar
Vanhaeke, D., Vainchenker, W., Yver, A. & Leverger, G. [A case of erythoblastic leukemia with basophilic reaction]. Presse Med.20, 267 (1991). CASPubMed Google Scholar
Ito, E. et al. Expression of erythroid-specific genes in acute megakaryoblastic leukaemia and transient myeloproliferative disorder in Down's syndrome. Br. J. Haematol.90, 607–614 (1995). ArticleCASPubMed Google Scholar
Suda, J. et al. Differentiation of blast cells from a Down's syndrome patient with transient myeloproliferative disorder. Blood69, 508–512 (1987). ArticleCASPubMed Google Scholar
Suda, T. et al. Clonal analysis of basophil differentiation in bone marrow cultures from a Down's syndrome patient with megakaryoblastic leukemia. Blood66, 1278–1283 (1985). ArticleCASPubMed Google Scholar
Worth, L. L., Zipursky, A., Christensen, H. & Tubergen, D. Transient leukemia with extreme basophilia in a phenotypically normal infant with blast cells containing a pseudodiploid clone, 46,XY i(21)(q10). J. Pediatr. Hematol. Oncol.21, 63–66 (1999). ArticleCASPubMed Google Scholar
Cantor, A. B. & Orkin, S. H. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene21, 3368–3376 (2002). ArticleCASPubMed Google Scholar
Kulessa, H., Frampton, J. & Graf, T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev.9, 1250–1262 (1995). ArticleCASPubMed Google Scholar
Orkin, S. H., Shivdasani, R. A., Fujiwara, Y. & McDevitt, M. A. Transcription factor GATA-1 in megakaryocyte development. Stem Cells16 (Suppl. 2), 79–83 (1998). PubMed Google Scholar
Tsang, A. P. et al. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell90, 109–119 (1997). ArticleCASPubMed Google Scholar
Shivdasani, R. A. et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell81, 695–704 (1995). ArticleCASPubMed Google Scholar
Hart, A. et al. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity13, 167–177 (2000). ArticleCASPubMed Google Scholar
Saleque, S., Cameron, S. & Orkin, S. H. The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev.16, 301–306 (2002). ArticleCASPubMedPubMed Central Google Scholar
Matsumura, I. & Kanakura, Y. Molecular control of megakaryopoiesis and thrombopoiesis. Int. J. Hematol.75, 473–483 (2002). ArticleCASPubMed Google Scholar
Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G. & Downing, J. R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell84, 321–330 (1996). ArticleCASPubMed Google Scholar
Wang, Q. et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. PNAS93, 3444–3449 (1996). ArticleCASPubMedPubMed Central Google Scholar
Elagib, K. E. et al. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood101, 4333–4341 (2003). ArticleCASPubMed Google Scholar
Tsai, S. F. et al. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature339, 446–451 (1989). ArticleCASPubMed Google Scholar
Evans, T. & Felsenfeld, G. The erythroid-specific transcription factor Eryf1: a new finger protein. Cell58, 877–885 (1989). ArticleCASPubMed Google Scholar
Martin, D. I., Zon, L. I., Mutter, G. & Orkin, S. H. Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature344, 444–447 (1990). ArticleCASPubMed Google Scholar
Romeo, P. H. et al. Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature344, 447–449 (1990). ArticleCASPubMed Google Scholar
Zon, L. I. et al. Expression of mRNA for the GATA-binding proteins in human eosinophils and basophils: potential role in gene transcription. Blood81, 3234–3241 (1993). ArticleCASPubMed Google Scholar
Yu, C. et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J. Exp. Med.195, 1387–1395 (2002). ArticleCASPubMedPubMed Central Google Scholar
Migliaccio, A. R. et al. GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1low mouse mutant. J. Exp. Med.197, 281–296 (2003). ArticleCASPubMedPubMed Central Google Scholar
Visvader, J. E., Elefanty, A. G., Strasser, A. & Adams, J. M. GATA-1 but not SCL induces megakaryocytic differentiation in an early myeloid line. EMBO J.11, 4557–4564 (1992). ArticleCASPubMedPubMed Central Google Scholar
Yamaguchi, Y., Zon, L. I., Ackerman, S. J., Yamamoto, M. & Suda, T. Forced GATA-1 expression in the murine myeloid cell line M1: induction of c-Mpl expression and megakaryocytic/erythroid differentiation. Blood91, 450–457 (1998). ArticleCASPubMed Google Scholar
Fujiwara, Y., Browne, C. P., Cunniff, K., Goff, S. C. & Orkin, S. H. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc. Natl Acad. Sci. USA93, 12355–12358 (1996). ArticleCASPubMedPubMed Central Google Scholar
Shivdasani, R. A., Fujiwara, Y., McDevitt, M. A. & Orkin, S. H. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J.16, 3965–3973 (1997). Description of the effects of GATA1 deficiency in the cells of megakaryocytic lineage in anin vivomodel that has phenotypic similarities with TL of DS. ArticleCASPubMedPubMed Central Google Scholar
Vyas, P., Ault, K., Jackson, C. W., Orkin, S. H. & Shivdasani, R. A. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood93, 2867–2875 (1999). ArticleCASPubMed Google Scholar
Gurbuxani, S., Vyas, P. & Crispino, J. D. Recent insights into the mechanisms of myeloid leukemogenesis in Down syndrome. Blood103, 399–406 (2004). Comprehensive review of currently available models of decreased haematopoietic GATA1 functionin vivoand the effects on megakaryocytic differentiation. ArticleCASPubMed Google Scholar
Takahashi, S. et al. Role of GATA-1 in proliferation and differentiation of definitive erythroid and megakaryocytic cells in vivo. Blood92, 434–442 (1998). ArticleCASPubMed Google Scholar
Vannucchi, A. M. et al. Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1low mice). Blood100, 1123–1132 (2002). ArticleCASPubMed Google Scholar
Cripe, L. & Hromas, R. Malignant disorders of megakaryocytes. Semin. Hematol.35, 200–209 (1998). CASPubMed Google Scholar
Nichols, K. E. et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nature Genet.24, 266–270 (2000). ArticleCASPubMed Google Scholar
Freson, K. et al. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood98, 85–92 (2001). ArticleCASPubMed Google Scholar
Mehaffey, M. G., Newton, A. L., Gandhi, M. J., Crossley, M. & Drachman, J. G. X-linked thrombocytopenia caused by a novel mutation of GATA-1. Blood98, 2681–2688 (2001). ArticleCASPubMed Google Scholar
Yu, C. et al. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood100, 2040–2045 (2002). ArticleCASPubMed Google Scholar
Crispino, J. D. GATA1 mutations in Down syndrome: implications for biology and diagnosis of children with transient myeloproliferative disorder and acute megakaryoblastic leukemia. Pediatr. Blood Cancer44, 40–44 (2005). ArticlePubMed Google Scholar
Rainis, L. et al. Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21. Blood102, 981–986 (2003). ArticleCASPubMed Google Scholar
Hitzler, J. K., Cheung, J., Li, Y., Scherer, S. W. & Zipursky, A. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood101, 4301–4304 (2003). ArticleCASPubMed Google Scholar
Xu, G. et al. Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down syndrome. Blood102, 2960–2968 (2003). ArticleCASPubMed Google Scholar
Harigae, H. et al. The GATA1 mutation in an adult patient with acute megakaryoblastic leukemia not accompanying Down syndrome. Blood103, 3242–3243 (2004). ArticleCASPubMed Google Scholar
Taub, J. W. & Ge, Y. Down syndrome, drug metabolism and chromosome 21. Pediatr. Blood Cancer44, 33–39 (2005). ArticlePubMed Google Scholar
Ge, Y. et al. The role of cytidine deaminase and GATA1 mutations in the increased cytosine arabinoside sensitivity of Down syndrome myeloblasts and leukemia cell lines. Cancer Res.64, 728–735 (2004). Update on the unique pharmacological sensitivity of the blasts in (non-lymphoid) leukaemia of DS with reference to previous work in this area. ArticleCASPubMed Google Scholar
Groet, J. et al. Acquired mutations in GATA1 in neonates with Down's syndrome with transient myeloid disorder. Lancet361, 1617–1620 (2003). ArticleCASPubMed Google Scholar
Mundschau, G. et al. Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood101, 4298–4300 (2003). ArticleCASPubMed Google Scholar
Taub, J. W. et al. Prenatal origin of GATA1 mutations may be an initiating step in the development of megakaryocytic leukemia in Down syndrome. Blood104, 1588–1589 (2004). ArticleCASPubMed Google Scholar
McElwaine, S. et al. Microarray transcript profiling distinguishes the transient from the acute type of megakaryoblastic leukaemia (M7) in Down's syndrome, revealing PRAME as a specific discriminating marker. Br. J. Haematol.125, 729–742 (2004). ArticleCASPubMed Google Scholar
Lightfoot, J., Hitzler, J., Zipursky, A., Albert, M. & Macgregor, P. Distinct gene signatures of transient and acute megakaryoblastic leukemia in Down syndrome. Leukemia18, 1617–1623 (2004). ArticleCASPubMed Google Scholar
Calligaris, R., Bottardi, S., Cogoi, S., Apezteguia, I. & Santoro, C. Alternative translation initiation site usage results in two functionally distinct forms of the GATA-1 transcription factor. Proc. Natl Acad. Sci. USA92, 11598–11602 (1995). ArticleCASPubMedPubMed Central Google Scholar
Shimizu, R., Takahashi, S., Ohneda, K., Engel, J. D. & Yamamoto, M. In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis. EMBO J.20, 5250–5260 (2001). ArticleCASPubMedPubMed Central Google Scholar
Speck, N. A. & Gilliland, D. G. Core-binding factors in haematopoiesis and leukaemia. Nature Rev. Cancer2, 502–513 (2002). ArticleCAS Google Scholar
Ichikawa, M. et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nature Med.10, 299–304 (2004). ArticleCASPubMed Google Scholar
Song, W. J. et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nature Genet.23, 166–175 (1999). ArticleCASPubMed Google Scholar
Waltzer, L., Ferjoux, G., Bataille, L. & Haenlin, M. Cooperation between the GATA and RUNX factors Serpent and Lozenge during Drosophila hematopoiesis. EMBO J.22, 6516–6525 (2003). ArticleCASPubMedPubMed Central Google Scholar
Antonarakis, S. E., Lyle, R., Dermitzakis, E. T., Reymond, A. & Deutsch, S. Chromosome 21 and down syndrome: from genomics to pathophysiology. Nature Rev. Genet.5, 725–738 (2004). ArticleCASPubMed Google Scholar
Gitton, Y. et al. A gene expression map of human chromosome 21 orthologues in the mouse. Nature420, 586–590 (2002). ArticleCASPubMed Google Scholar
Reymond, A. et al. Human chromosome 21 gene expression atlas in the mouse. Nature420, 582–586 (2002). ArticleCASPubMed Google Scholar
Korenberg, J. R. et al. Down syndrome phenotypes: the consequences of chromosomal imbalance. Proc. Natl Acad. Sci. USA91, 4997–5001 (1994). ArticleCASPubMedPubMed Central Google Scholar
Kola, I. & Hertzog, P. J. Down syndrome and mouse models. Curr. Opin. Genet. Dev.8, 316–321 (1998). ArticleCASPubMed Google Scholar
Epstein, C. J., Cox, D. R. & Epstein, L. B. Mouse trisomy 16: an animal model of human trisomy 21 (Down syndrome). Ann. NY Acad. Sci.450, 157–168 (1985). ArticleCASPubMed Google Scholar
Jones, K. Smith's Recognizable Patterns of Human Malformation 4th edn 10–15 (W. B. Saunders Company, Philadelphia, 1988). Google Scholar
Down, J. Observations on an ethnic classification of idiots. London Hosp. Clin. Lect. Rep. 259 (1866).
Lejeune, J., Gautier, M. & Turpin, R. Etude des chromosomes somatiques de neuf enfants mongoliens. C.R. Acad. Sci.248, 1721–1722 (1959). CAS Google Scholar
Ravindranath, Y. Down syndrome and acute myeloid leukemia: the paradox of increased risk for leukemia and heightened sensitivity to chemotherapy. J. Clin. Oncol.21, 3385–3387 (2003). ArticlePubMed Google Scholar
Ravindranath, Y. et al. Acute myeloid leukemia (AML) in Down's syndrome is highly responsive to chemotherapy: experience on Pediatric Oncology Group AML Study 8498. Blood80, 2210–2214 (1992). ArticleCASPubMed Google Scholar
Gamis, A. S. et al. Increased age at diagnosis has a significantly negative effect on outcome in children with Down syndrome and acute myeloid leukemia: a report from the Children's Cancer Group Study 2891. J. Clin. Oncol.21, 3415–3422 (2003). ArticlePubMed Google Scholar
Taub, J. W. et al. Expression of chromosome 21-localized genes in acute myeloid leukemia: differences between Down syndrome and non-Down syndrome blast cells and relationship to in vitro sensitivity to cytosine arabinoside and daunorubicin. Blood94, 1393–1400 (1999). CASPubMed Google Scholar
Taub, J. W. et al. Enhanced metabolism of 1-β-D-arabinofuranosylcytosine in Down syndrome cells: a contributing factor to the superior event free survival of Down syndrome children with acute myeloid leukemia. Blood87, 3395–3403 (1996). ArticleCASPubMed Google Scholar
Zipursky, A. The treatment of children with acute megakaryoblastic leukemia who have Down syndrome. J. Pediatr. Hematol. Oncol.18, 10–12 (1996). Article Google Scholar
Arai, H. et al. Immunohistochemical study on transforming growth factor-β1 expression in liver fibrosis of Down's syndrome with transient abnormal myelopoiesis. Hum. Pathol.30, 474–476 (1999). ArticleCASPubMed Google Scholar
Hattori, H. et al. High expression of platelet-derived growth factor and transforming growth factor-β1 in blast cells from patients with Down Syndrome suffering from transient myeloproliferative disorder and organ fibrosis. Br. J. Haematol.115, 472–475 (2001). ArticleCASPubMed Google Scholar
Greaves, M. F. & Wiemel, J. Origins of chromosome translocations in childhood leukaemia. Nature Rev. Cancer3, 639–649 (2003). ArticleCAS Google Scholar
Trainor, C. D. et al. A palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA-binding domain for high-affinity interaction. Mol. Cell. Biol.16, 2238–2247 (1996). ArticleCASPubMedPubMed Central Google Scholar
Hasle, H. et al. A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia17, 277–282 (2003). ArticleCASPubMed Google Scholar
Creutzig, U. et al. Myelodysplasia and acute myelogenous leukemia in Down's syndrome. A report of 40 children of the AML-BFM study group. Leukemia10, 1677–1686 (1996). CASPubMed Google Scholar