TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis (original) (raw)
Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell124, 783–801 (2006). ArticleCAS Google Scholar
Beutler, B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature430, 257–263 (2004). ArticleCAS Google Scholar
Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature449, 819–826 (2007). ArticleCAS Google Scholar
Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity11, 115–122 (1999). ArticleCAS Google Scholar
Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science301, 640–643 (2003). ArticleCAS Google Scholar
O'Neill, L.A. & Bowie, A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol.7, 353–364 (2007). ArticleCAS Google Scholar
Kawagoe, T. et al. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat. Immunol.9, 684–691 (2008). ArticleCAS Google Scholar
Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature412, 346–351 (2001). ArticleCAS Google Scholar
Honda, K., Takaoka, A. & Taniguchi, T. Type I interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity25, 349–360 (2006). ArticleCAS Google Scholar
Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol.6, 823–835 (2006). ArticleCAS Google Scholar
Christensen, S.R. & Shlomchik, M.J. Regulation of lupus-related autoantibody production and clinical disease by Toll-like receptors. Semin. Immunol.19, 11–23 (2007). ArticleCAS Google Scholar
Lau, C.M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med.202, 1171–1177 (2005). ArticleCAS Google Scholar
Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science312, 1669–1672 (2006). ArticleCAS Google Scholar
Viglianti, G.A. et al. Activation of autoreactive B cells by CpG dsDNA. Immunity19, 837–847 (2003). ArticleCAS Google Scholar
Liew, F.Y., Xu, D., Brint, E.K. & O'Neill, L.A. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol.5, 446–458 (2005). ArticleCAS Google Scholar
Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell110, 191–202 (2002). ArticleCAS Google Scholar
Brint, E.K. et al. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat. Immunol.5, 373–379 (2004). ArticleCAS Google Scholar
Wald, D. et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat. Immunol.4, 920–927 (2003). ArticleCAS Google Scholar
Nakagawa, R. et al. SOCS1 participates in negative regulation of LPS responses. Immunity17, 677–687 (2002). ArticleCAS Google Scholar
Reiley, W.W. et al. Regulation of T cell development by the deubiquitinating enzyme CYLD. Nat. Immunol.7, 411–417 (2006). ArticleCAS Google Scholar
Lee, E.G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science289, 2350–2354 (2000). ArticleCAS Google Scholar
Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell75, 263–274 (1993). ArticleCAS Google Scholar
Kobayashi, M. et al. Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice. J. Clin. Invest.111, 1297–1308 (2003). ArticleCAS Google Scholar
Rakoff-Nahoum, S., Hao, L. & Medzhitov, R. Role of toll-like receptors in spontaneous commensal-dependent colitis. Immunity25, 319–329 (2006). ArticleCAS Google Scholar
Cheng, G. & Baltimore, D. TANK, a co-inducer with TRAF2 of TNF- and CD 40L-mediated NF-κB activation. Genes Dev.10, 963–973 (1996). ArticleCAS Google Scholar
Rothe, M. et al. I-TRAF is a novel TRAF-interacting protein that regulates TRAF-mediated signal transduction. Proc. Natl. Acad. Sci. USA93, 8241–8246 (1996). ArticleCAS Google Scholar
Chin, A.I. et al. TANK potentiates tumor necrosis factor receptor-associated factor-mediated c-Jun N-terminal kinase/stress-activated protein kinase activation through the germinal center kinase pathway. Mol. Cell. Biol.19, 6665–6672 (1999). ArticleCAS Google Scholar
Li, C. et al. Downstream regulator TANK binds to the CD40 recognition site on TRAF3. Structure10, 403–411 (2002). ArticleCAS Google Scholar
Pomerantz, J.L. & Baltimore, D. NF-κB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J.18, 6694–6704 (1999). ArticleCAS Google Scholar
Nomura, F., Kawai, T., Nakanishi, K. & Akira, S. NF-κB activation through IKK-i-dependent I-TRAF/TANK phosphorylation. Genes Cells5, 191–202 (2000). ArticleCAS Google Scholar
Fitzgerald, K.A. et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol.4, 491–496 (2003). ArticleCAS Google Scholar
Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science300, 1148–1151 (2003). ArticleCAS Google Scholar
Hemmi, H. et al. The roles of two IκB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med.199, 1641–1650 (2004). ArticleCAS Google Scholar
Kato, H. et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity23, 19–28 (2005). ArticleCAS Google Scholar
Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature439, 204–207 (2006). Article Google Scholar
Oganesyan, G. et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature439, 208–211 (2006). ArticleCAS Google Scholar
Guo, B. & Cheng, G. Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J. Biol. Chem.282, 11817–11826 (2007). ArticleCAS Google Scholar
Sasai, M. et al. Cutting edge: NF-κB-activating kinase-associated protein 1 participates in TLR3/Toll-IL-1 homology domain-containing adapter molecule-1-mediated IFN regulatory factor 3 activation. J. Immunol.174, 27–30 (2005). ArticleCAS Google Scholar
Ryzhakov, G. & Randow, F. SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. EMBO J.26, 3180–3190 (2007). ArticleCAS Google Scholar
Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature430, 694–699 (2004). ArticleCAS Google Scholar
Brummelkamp, T.R., Nijman, S.M., Dirac, A.M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature424, 797–801 (2003). ArticleCAS Google Scholar
Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature424, 793–796 (2003). ArticleCAS Google Scholar
Sun, L., Deng, L., Ea, C.K., Xia, Z.P. & Chen, Z.J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell14, 289–301 (2004). ArticleCAS Google Scholar
He, J.Q. et al. Rescue of TRAF3-null mice by p100 NF-κB deficiency. J. Exp. Med.203, 2413–2418 (2006). ArticleCAS Google Scholar
Suematsu, S. et al. IgG1 plasmacytosis in interleukin 6 transgenic mice. Proc. Natl. Acad. Sci. USA86, 7547–7551 (1989). ArticleCAS Google Scholar
Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol.5, 1052–1060 (2004). ArticleCAS Google Scholar
Turer, E.E. et al. Homeostatic MyD88-dependent signals cause lethal inflamMation in the absence of A20. J. Exp. Med.205, 451–464 (2008). ArticleCAS Google Scholar
Xavier, R.J. & Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature448, 427–434 (2007). ArticleCAS Google Scholar
Elson, C.O. et al. Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol. Rev.206, 260–276 (2005). Article Google Scholar
Sato, S. et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat. Immunol.6, 1087–1095 (2005). ArticleCAS Google Scholar