Toll-like receptors in systemic autoimmune disease (original) (raw)
Casciola-Rosen, L. A., Anhalt, G. & Rosen, A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med.179, 1317–1330 (1994). ArticleCASPubMed Google Scholar
Rosen, A. & Casciola-Rosen, L. Autoantigens as substrates for apoptotic proteases: implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ.6, 6–12 (1999). ArticleCASPubMed Google Scholar
Plotz, P. H. The autoantibody repertoire: searching for order. Nature Rev. Immunol.3, 73–78 (2003). ArticleCAS Google Scholar
Medzhitov, R. & Janeway, C. A. Jr. Innate immune recognition: mechanisms and pathways. Immunol. Rev.173, 89–97 (2000). ArticleCASPubMed Google Scholar
Tsan, M.-F. & Gao, B. Endogenous ligands of Toll-like receptors. J. Leukoc. Biol.76, 514–519 (2004). ArticleCASPubMed Google Scholar
Theofilopoulos, A. N., Baccala, R., Beutler, B. & Kono, D. H. Type I interferons (α/β) in immunity and autoimmunity. Annu. Rev. Immunol.23, 307–336 (2005). ArticleCASPubMed Google Scholar
Preble, O. T., Black, R. J., Friedman, R. M., Klippel, J. H. & Vilcek, J. Systemic lupus erythematosus: presence in human serum of an unusual acid-labile leukocyte interferon. Science216, 429–431 (1982). ArticleCASPubMed Google Scholar
Rönnblom, L. E., Alm, G. V. & Oberg, K. E. Possible induction of systemic lupus erythematosus by interferon-α treatment in a patient with a malignant carcinoid tumour. J. Intern. Med.227, 207–210 (1990). ArticlePubMed Google Scholar
Gota, C. & Calabrese, L. Induction of clinical autoimmune disease by therapeutic interferon-α. Autoimmunity36, 511–518 (2003). ArticlePubMed Google Scholar
Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA100, 2610–2615 (2003). ArticleCASPubMedPubMed Central Google Scholar
Banchereau, J., Pascual, V. & Palucka, A. K. Autoimmunity through cytokine-induced dendritic cell activation. Immunity20, 539–550 (2004). ArticleCASPubMed Google Scholar
Rönnblom, L. & Alm, G. V. A pivotal role for the natural interferon α-producing cells (plasmacytoid dendritic cells) in the pathogenesis of lupus. J. Exp. Med.194, F59–F63 (2001). ArticlePubMedPubMed Central Google Scholar
Vallin, H., Blomberg, S., Alm, G. V., Cederblad, B. & Rönnblom, L. Patients with systemic lupus erythematosus (SLE) have a circulating inducer of interferon-α (IFN-α) production acting on leucocytes resembling immature dendritic cells. Clin. Exp. Immunol.115, 196–202 (1999). ArticleCASPubMedPubMed Central Google Scholar
Rönnblom, L. & Alm, G. V. An etiopathogenic role for the type I IFN system in SLE. Trends Immunol.22, 427–431 (2001). Excellent review of the studies that establish a key role for nucleic-acid-containing immune complexes in the induction of IFNα production by pDCs. ArticlePubMed Google Scholar
Lovgren, T., Eloranta, M. L., Bave, U., Alm, G. V. & Rönnblom, L. Induction of interferon-α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum.50, 1861–1872 (2004). ArticleCASPubMed Google Scholar
Amigorena, S. & Bonnerot, C. Role of B-cell and Fc receptors in the selection of T cell epitopes. Curr. Opin. Immunol.10, 88–92 (1998). ArticleCASPubMed Google Scholar
Bave, U. et al. FcγRIIa is expressed on natural IFN-α-producing cells (plasmacytoid dendritic cells) and is required for the IFN-α production induced by apoptotic cells combined with lupus IgG. J. Immunol.171, 3296–3302 (2003). ArticleCASPubMed Google Scholar
Kadowaki, N. et al. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J. Exp. Med.194, 863–869 (2001). ArticleCASPubMedPubMed Central Google Scholar
Krieg, A. M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature374, 546–549 (1995). ArticleCASPubMed Google Scholar
Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science303, 1529–1531 (2004). ArticleCASPubMed Google Scholar
Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science303, 1526–1529 (2004). ArticleCASPubMed Google Scholar
Lund, J. M. et al. TLR7: a new sensor of viral infection. Proc. Natl Acad. Sci. USA101, 6835–6836 (2004). ArticleCAS Google Scholar
Ahmad-Nejad, P. et al. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol.32, 1958–1968 (2002). ArticleCASPubMed Google Scholar
Boule, M. W. et al. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin–immunoglobulin G complexes. J. Exp. Med.199, 1631–1640 (2004). ArticleCASPubMedPubMed Central Google Scholar
Means, T. K. et al. Human lupus autoantibody–DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Invest.115, 407–417 (2005). References 27 and 28 were the first to show the involvement of TLRs in the activation of DCs by DNA-containing immune complexes. ArticleCASPubMedPubMed Central Google Scholar
Honda, K. et al. Spatiotemporal regulation of MyD88–IRF-7 signalling for robust type-I interferon induction. Nature434, 1035–1040 (2005). ArticleCASPubMed Google Scholar
Vollmer, J. et al. Autoantigen binding sites within small nuclear RNAs induce innate immunity through Toll-like receptors 7 and 8. J. Exp. Med.202, 1575–1585 (2005). Shows that activation of TLR7 by snRNAs is sequence specific. ArticleCASPubMedPubMed Central Google Scholar
Barrat, F. J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med.202, 1131–1139 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lovgren, T. et al. Induction of interferon-α by immune complexes or liposomes containing systemic lupus erythematosus and Sjögren's syndrome autoantigen-associated RNA. Arthritis Rheum.54, 1917–1927 (2006). ArticleCASPubMed Google Scholar
Savarese, E. et al. U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood107, 3229–3234 (2006). ArticleCASPubMed Google Scholar
Rifkin, I. R., Leadbetter, E. A., Busconi, L., Viglianti, G. & Marshak-Rothstein, A. Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol. Rev.204, 27–42 (2005). ArticleCASPubMed Google Scholar
Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science301, 1374–1377 (2003). ArticleCASPubMed Google Scholar
Chen, C. J. et al. High prevalence of immunoglobulin A antibody against Epstein–Barr virus capsid antigen in adult patients with lupus with disease flare: case control studies. J. Rheumatol.32, 44–47 (2005). PubMed Google Scholar
Hunziker, L. et al. Hypergammaglobulinemia and autoantibody induction mechanisms in viral infections. Nature Immunol.4, 343–349 (2003). ArticleCAS Google Scholar
McClain, M. T. et al. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nature Med.11, 85–89 (2005). ArticleCASPubMed Google Scholar
Wang, Y. & Krieg, A. M. Synergy between CpG- or non-CpG DNA and specific antigen for B cell activation. Int. Immunol.15, 223–231 (2003). ArticleCASPubMed Google Scholar
Bekeredjian-Ding, I. B. et al. Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J. Immunol.174, 4043–4050 (2005). ArticlePubMed Google Scholar
Brummel, R., Roberts, T. L., Stacey, K. J. & Lenert, P. Higher-order CpG-DNA stimulation reveals distinct activation requirements for marginal zone and follicular B cells in lupus mice. Eur. J. Immunol.36, 1951–1962 (2006). ArticleCASPubMed Google Scholar
Jacobson, B. A. et al. An isotype switched and somatically mutated rheumatoid factor clone isolated from a MRL-lpr/lpr mouse exhibits limited intraclonal affinity maturation. J. Immunol.152, 4489–4499 (1994). CASPubMed Google Scholar
Hannum, L. G., Ni, D., Haberman, A. M., Weigert, M. G. & Shlomchik, M. J. A disease-related rheumatoid factor autoantibody is not tolerized in a normal mouse: implications for the origins of autoantibodies in autoimmune disease. J. Exp. Med.184, 1269–1278 (1996). ArticleCASPubMed Google Scholar
Leadbetter, E. A. et al. Chromatin–IgG complexes activate autoreactive B cells by dual engagement of sIgM and Toll-like receptors. Nature416, 603–607 (2002). ArticleCASPubMed Google Scholar
Lau, C. M. et al. RNA-associated autoantigens activate B cells by combined BCR/Toll-like receptor 7 engagement. J. Exp. Med.202, 1171–1177 (2005). References 45 and 46 were the first to show that thein vitroactivation of autoreactive B cells by DNA- and RNA-containing immune complexes depends on TLR9 and TLR7, respectively. ArticleCASPubMedPubMed Central Google Scholar
Busconi, L. et al. DNA and RNA autoantigens as autoadjuvants. J. Endotoxin Res. (in the press).
Viglianti, G. A. et al. Activation of autoreactive B cells by CpG dsDNA. Immunity19, 837–847 (2003). ArticleCASPubMed Google Scholar
Messina, J. P., Gilkeson, G. S. & Pisetsky, D. S. Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA. J. Immunol.147, 1759–1764 (1991). CASPubMed Google Scholar
Sun, S., Beard, C., Jaenisch, R., Jones, P. & Sprent, J. Mitogenicity of DNA from different organisms for murine B cells. J. Immunol.159, 3119–3125 (1997). CASPubMed Google Scholar
Stacey, K. J. et al. The molecular basis for the lack of immunostimulatory activity of vertebrate DNA. J. Immunol.170, 3614–3620 (2003). ArticleCASPubMed Google Scholar
Gursel, I. et al. Repetitive elements in mammalian telomeres suppress bacterial DNA-induced immune activation. J. Immunol.171, 1393–1400 (2003). ArticleCASPubMed Google Scholar
Barton, G. M., Kagan, J. C. & Medzhitov, R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nature Immunol.7, 49–56 (2006). ArticleCAS Google Scholar
Richardson, B. et al. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum.33, 1665–1673 (1990). ArticleCASPubMed Google Scholar
Sano, H. & Morimoto, C. DNA isolated from DNA/anti-DNA antibody immune complexes in systemic lupus erythematosus is rich in guanine–cytosine content. J. Immunol.128, 1341–1345 (1982). CASPubMed Google Scholar
Cornacchia, E. et al. Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J. Immunol.140, 2197–2200 (1988). CASPubMed Google Scholar
Lunec, J., Herbert, K., Blount, S., Griffiths, H. R. & Emery, P. 8-Hydroxydeoxyguanosine: a marker of oxidative DNA damage in systemic lupus erythematosus. FEBS Lett.348, 131–138 (1994). ArticleCASPubMed Google Scholar
Cooke, M. S., Mistry, N., Wood, C., Herbert, K. E. & Lunec, J. Immunogenicity of DNA damaged by reactive oxygen species — implications for anti-DNA antibodies in lupus. Free Radic. Biol. Med.22, 151–159 (1997). ArticleCASPubMed Google Scholar
Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity23, 165–175 (2005). Shows that post-transcriptional modification of mammalian RNA interferes with the ability of ssRNA to engage TLR7 effectively. ArticleCASPubMed Google Scholar
Emerit, I. & Michelson, A. M. Mechanism of photosensitivity in systemic lupus erythematosus patients. Proc. Natl Acad. Sci. USA78, 2537–2540 (1981). ArticleCASPubMedPubMed Central Google Scholar
Andrade, F., Casciola-Rosen, L. A. & Rosen, A. Generation of novel covalent RNA–protein complexes in cells by ultraviolet B irradiation: implications for autoimmunity. Arthritis Rheum.52, 1160–1170 (2005). ArticleCASPubMed Google Scholar
Caricchio, R., McPhie, L. & Cohen, P. L. Ultraviolet B radiation-induced cell death: critical role of ultraviolet dose in inflammation and lupus autoantigen redistribution. J. Immunol.171, 5778–5786 (2003). ArticleCASPubMed Google Scholar
Christensen, S. R. et al. Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J. Exp. Med.202, 321–331 (2005). ArticleCASPubMedPubMed Central Google Scholar
Christensen, S. R. et al. TLR7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity25, 417–428 (2006). Shows that TLR7-deficient autoimmune-prone mice do not produce antibodies that react with RNA-associated autoantigens and do not have exacerbated clinical disease. ArticleCASPubMed Google Scholar
Wu, X. & Peng, S. L. Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum.54, 336–342 (2006). ArticleCASPubMed Google Scholar
Yu, P. et al. Toll-like receptor 9-independent aggravation of glomerulonephritis in a novel model of SLE. Int. Immunol.18, 1211–1219 (2006). ArticleCASPubMed Google Scholar
Lartigue, A. et al. Role of TLR9 in anti-nucleosome and anti-DNA antibody production in lpr mutation-induced murine lupus. J. Immunol.177, 1349–1354 (2006). References 63–67 show that TLR9-deficient autoimmune-prone mice develop more severe clinical disease than do TLR9-sufficient mice, even though the titre of antibodies that react with dsDNA or nucleosomes is reduced. ArticleCASPubMed Google Scholar
Ehlers, M., Fukuyama, H., McGaha, T. L., Aderem, A. & Ravetch, J. V. TLR9/MyD88 signaling is required for class switching to pathogenic IgG2a and 2b autoantibodies in SLE. J. Exp. Med.203, 553–561 (2006). Shows that TLR9-deficient autoimmune-prone mice do not make DNA-specific antibodies of the pathogenic isotypes IgG2a and IgG2b. ArticleCASPubMedPubMed Central Google Scholar
Peng, S. L., Szabo, S. J. & Glimcher, L. H. T-bet regulates IgG class switching and pathogenic autoantibody production. Proc. Natl Acad. Sci. USA99, 5545–5550 (2002). ArticleCASPubMedPubMed Central Google Scholar
Berland, R. et al. Toll-like receptor 7-dependent loss of B cell tolerance in pathogenic autoantibody knockin mice. Immunity25, 429–440 (2006). ArticleCASPubMed Google Scholar
Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science312, 1669–1672 (2006). ArticleCASPubMed Google Scholar
Subramanian, S. et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA103, 9970–9975 (2006). References 71 and 72 show that theYaamutation results in a twofold increase in the expression of TLR7 and thatYaaaffects autoimmune-prone B cells directly, by skewing the autoantibody repertoire to antibodies that recognize RNA-associated autoantigens. ArticleCASPubMedPubMed Central Google Scholar
Bolland, S., Yim, Y. S., Tus, K., Wakeland, E. K. & Ravetch, J. V. Genetic modifiers of systemic lupus erythematosus in FcγRIIB−/− mice. J. Exp. Med.195, 1167–1174 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kirou, K. A. et al. Activation of the interferon-α pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum.52, 1491–1503 (2005). ArticleCASPubMed Google Scholar
Lenert, P. S. Targeting Toll-like receptor signaling in plasmacytoid dendritic cells and autoreactive B cells as a therapy for lupus. Arthritis Res. Ther.8, 203–214 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wallace, D. J. in Dubois' Lupus Erythematosus (eds Wallace, D. J. & Hahn, B. H.) 563–573 (Lea & Febiger, Philadelphia, 1987). Google Scholar
Tye, M. J., White, H., Appel, B. & Ansell, H. B. Lupus erythematosus treated with a combination of quinacrine, hydroxychloroquine, and chloroquine. N. Engl. J. Med.260, 63–66 (1959). ArticleCASPubMed Google Scholar
Macfarlane, D. E. & Manzel, L. Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine and structurally related compounds. J. Immunol.160, 1122–1131 (1998). CASPubMed Google Scholar
Hacker, H. et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J.17, 6230–6240 (1998). ArticleCASPubMedPubMed Central Google Scholar
Yi, A.-K. et al. CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species. J. Immunol.160, 4755–4761 (1998). CASPubMed Google Scholar
Krieg, A. M. CpG motifs: the active ingredient in bacterial extracts? Nature Med.9, 831–835 (2003). ArticleCASPubMed Google Scholar
Krieg, A. M. et al. Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc. Natl Acad. Sci. USA95, 12631–12636 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ashman, R. F., Goeken, J. A., Drahos, J. & Lenert, P. Sequence requirements for oligodeoxyribonucleotide inhibitory activity. Int. Immunol.17, 411–420 (2005). ArticleCASPubMed Google Scholar
Patole, P. S. et al. G-rich DNA suppresses systemic lupus. J. Am. Soc. Nephrol.16, 3273–3280 (2005). ArticleCASPubMed Google Scholar
Dong, L., Ito, S., Ishii, K. J. & Klinman, D. M. Suppressive oligodeoxynucleotides delay the onset of glomerulonephritis and prolong survival in lupus-prone NZB × NZW mice. Arthritis Rheum.52, 651–658 (2005). ArticleCASPubMed Google Scholar
Takaoka, A. et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature434, 243–249 (2005). ArticleCASPubMed Google Scholar
Schoenemeyer, A. et al. The interferon regulatory factor, IRF5, is a central mediator of Toll-like receptor 7 signaling. J. Biol. Chem.280, 17005–17012 (2005). ArticleCASPubMed Google Scholar
Sigurdsson, S. et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am. J. Hum. Genet.76, 528–537 (2005). ArticleCASPubMedPubMed Central Google Scholar
Graham, R. R. et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nature Genet.38, 550–555 (2006). References 88 and 89 identify variants of IRF5, a transcription factor downstream of TLR7 and TLR9, to be an important factor in susceptibility to SLE in humans. ArticleCASPubMed Google Scholar
Joosten, L. A. B. et al. Toll-like receptor 2 pathway drives streptococcal cell wall-induced joint inflammation: critical role of myeloid differentiation factor 88. J. Immunol.171, 6145–6153 (2003). ArticleCASPubMed Google Scholar
Deng, G. M., Nilsson, I. M., Verdrengh, M., Collins, L. V. & Tarkowski, A. Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nature Med.5, 702–705 (1999). ArticleCASPubMed Google Scholar
Waldner, H., Collins, M. & Kuchroo, V. K. Activation of antigen-presenting cells by microbial products breaks self tolerance and induces autoimmune disease. J. Clin. Invest.113, 990–997 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kerfoot, S. M. et al. TLR4 contributes to disease-inducing mechanisms resulting in central nervous system autoimmune disease. J. Immunol.173, 7070–7077 (2004). ArticleCASPubMed Google Scholar
Ichikawa, H. T., Williams, L. P. & Segal, B. M. Activation of APCs through CD40 or Toll-like receptor 9 overcomes tolerance and precipitates autoimmune disease. J. Immunol.169, 2781–2787 (2002). ArticleCASPubMed Google Scholar
Eriksson, U. et al. Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nature Med.9, 1484–1490 (2003). ArticleCASPubMed Google Scholar
Lang, K. S. et al. Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nature Med.11, 138–145 (2005). ArticleCASPubMed Google Scholar
Yumoto, H. et al. Sensitization of human aortic endothelial cells to lipopolysaccharide via regulation of Toll-like receptor 4 by bacterial fimbria-dependent invasion. Infect. Immun.73, 8050–8059 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kiechl, S. et al. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med.347, 185–192 (2002). ArticleCASPubMed Google Scholar
Kilding, R. et al. A biologically important single nucleotide polymorphism within the Toll-like receptor-4 gene is not associated with rheumatoid arthritis. Clin. Exp. Rheumatol.21, 340–342 (2003). CASPubMed Google Scholar
Choe, J.-Y., Crain, B., Wu, S. R. & Corr, M. Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by Toll-like receptor 4 signaling. J. Exp. Med.197, 537–542 (2003). ArticleCASPubMedPubMed Central Google Scholar
Prinz, M. et al. Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J. Clin. Invest.116, 456–464 (2006). ArticleCASPubMedPubMed Central Google Scholar
Iliev, A. I., Stringaris, A. K., Nau, R. & Neumann, H. Neuronal injury mediated via stimulation of microglial Toll-like receptor-9 (TLR9). FASEB J.18, 412–414 (2004). ArticleCASPubMed Google Scholar
Leemans, J. C. et al. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J. Clin. Invest.115, 2894–2903 (2005). ArticleCASPubMedPubMed Central Google Scholar
Shishido, T. et al. Toll-like receptor 2 modulates ventricular remodeling after myocardial infarction. Circulation108, 2905–2910 (2003). ArticleCASPubMed Google Scholar
Oyama, J. et al. Reduced myocardial ischemia–reperfusion injury in Toll-like receptor 4-deficient mice. Circulation109, 784–789 (2004). ArticleCASPubMed Google Scholar
Jiang, D. et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Med.11, 1173–1179 (2005). ArticleCASPubMed Google Scholar
Tan, E. Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv. Immunol.44, 93–151 (1989). ArticleCASPubMed Google Scholar
Krieg, A. M. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol.20, 709–760 (2002). ArticleCASPubMed Google Scholar
Verthelyi, D. & Zeuner, R. A. Differential signaling by CpG DNA in DCs and B cells: not just TLR9. Trends Immunol.24, 519–522 (2003). ArticleCASPubMed Google Scholar
Hartmann, G. et al. Rational design of new CpG oligonucleotides that combine B cell activation with high IFN-α induction in plasmacytoid dendritic cells. Eur. J. Immunol.33, 1633–1641 (2003). ArticleCASPubMed Google Scholar
Li, M. et al. An essential role of the NF-κB/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J. Immunol.166, 7128–7135 (2001). ArticleCASPubMed Google Scholar
Vabulas, R. M., Wagner, H. & Schild, H. Heat shock proteins as ligands of Toll-like receptors. Curr. Top. Microbiol. Immunol.270, 169–184 (2002). CASPubMed Google Scholar
Liu, B. et al. Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases. Proc. Natl Acad. Sci. USA100, 15824–15829 (2003). ArticleCASPubMedPubMed Central Google Scholar
Park, J. S. et al. Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem.279, 7370–7377 (2004). ArticleCASPubMed Google Scholar
Taylor, K. R. et al. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J. Biol. Chem.279, 17079–17084 (2004). ArticleCASPubMed Google Scholar
Okamura, Y. et al. The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem.276, 10229–10233 (2001). ArticleCASPubMed Google Scholar
Miller, Y. I. et al. Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J. Biol. Chem.278, 1561–1568 (2003). ArticleCASPubMed Google Scholar
Johnson, G. B., Brunn, G. J. & Platt, J. L. An endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through Toll-like receptor 4. J. Immunol.172, 20–24 (2004). ArticleCASPubMed Google Scholar
Smiley, S. T., King, J. A. & Hancock, W. W. Fibrinogen stimulates macrophage chemokine secretion through Toll-like receptor 4. J. Immunol.167, 2887–2894 (2001). ArticleCASPubMed Google Scholar
Roelofs, M. F. et al. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J. Immunol.176, 7021–7027 (2006). ArticleCASPubMed Google Scholar
Brentano, F., Schorr, O., Gay, R. E., Gay, S. & Kyburz, D. RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3. Arthritis Rheum.52, 2656–2665 (2005). ArticleCASPubMed Google Scholar
Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol.21, 335–376 (2003). ArticleCASPubMed Google Scholar
Zhang, D. et al. A Toll-like receptor that prevents infection by uropathogenic bacteria. Science303, 1522–1526 (2004). ArticleCASPubMed Google Scholar
Yarovinsky, F. et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science308, 1626–1629 (2005). ArticleCASPubMed Google Scholar