An endogenous positively selecting peptide enhances mature T cell responses and becomes an autoantigen in the absence of microRNA miR-181a (original) (raw)

References

  1. Kisielow, P., Bluthmann, H., Staerz, U.D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742–746 (1988).
    Article CAS Google Scholar
  2. Hogquist, K.A., Gavin, M.A. & Bevan, M.J. Positive selection of CD8+ T cells induced by major histocompatibility complex binding peptides in fetal thymic organ culture. J. Exp. Med. 177, 1469–1473 (1993).
    Article CAS Google Scholar
  3. Goldrath, A.W. & Bevan, M.J. Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 11, 183–190 (1999).
    Article CAS Google Scholar
  4. Ernst, B., Lee, D.S., Chang, J.M., Sprent, J. & Surh, C.D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173–181 (1999).
    Article CAS Google Scholar
  5. Stefanova, I., Dorfman, J.R., Tsukamoto, M. & Germain, R.N. On the role of self-recognition in T cell responses to foreign antigen. Immunol. Rev. 191, 97–106 (2003).
    Article CAS Google Scholar
  6. Yachi, P.P., Ampudia, J., Gascoigne, N.R. & Zal, T. Nonstimulatory peptides contribute to antigen-induced CD8–T cell receptor interaction at the immunological synapse. Nat. Immunol. 6, 785–792 (2005).
    Article CAS Google Scholar
  7. Krogsgaard, M. & Davis, M.M. How T cells 'see' antigen. Nat. Immunol. 6, 239–245 (2005).
    Article CAS Google Scholar
  8. Santori, F.R. et al. Rare, structurally homologous self-peptides promote thymocyte positive selection. Immunity 17, 131–142 (2002).
    Article CAS Google Scholar
  9. Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).
    Article CAS Google Scholar
  10. Berg, L.J. et al. Antigen/MHC-specific T cells are preferentially exported from the thymus in the presence of their MHC ligand. Cell 58, 1035–1046 (1989).
    Article CAS Google Scholar
  11. Tourne, S., Nakano, N., Viville, S., Benoist, C. & Mathis, D. The influence of invariant chain on the positive selection of single T cell receptor specificities. Eur. J. Immunol. 25, 1851–1856 (1995).
    Article CAS Google Scholar
  12. Barton, G.M. & Rudensky, A.Y. Requirement for diverse, low-abundance peptides in positive selection of T cells. Science 283, 67–70 (1999).
    Article CAS Google Scholar
  13. Jones, M.E. & Zhuang, Y. Acquisition of a functional T cell receptor during T lymphocyte development is enforced by HEB and E2A transcription factors. Immunity 27, 860–870 (2007).
    Article CAS Google Scholar
  14. Voll, R.E. et al. NF-kappa B activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity 13, 677–689 (2000).
    Article CAS Google Scholar
  15. Linette, G.P. et al. Bcl-2 is upregulated at the CD4+CD8+ stage during positive selection and promotes thymocyte differentiation at several control points. Immunity 1, 197–205 (1994).
    Article CAS Google Scholar
  16. Chen, C.Z., Li, L., Lodish, H.F. & Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004).
    Article CAS Google Scholar
  17. Li, Q.J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147–161 (2007).
    Article CAS Google Scholar
  18. Leung, A.K. & Sharp, P.A. Function and localization of microRNAs in mammalian cells. Cold Spring Harb. Symp. Quant. Biol. 71, 29–38 (2006).
    Article CAS Google Scholar
  19. Davey, G.M. et al. Preselection thymocytes are more sensitive to T cell receptor stimulation than mature T cells. J. Exp. Med. 188, 1867–1874 (1998).
    Article CAS Google Scholar
  20. Ebert, P.J., Ehrlich, L.I. & Davis, M.M. Low ligand requirement for deletion and lack of synapses in positive selection enforce the gauntlet of thymic T cell maturation. Immunity 29, 734–745 (2008).
    Article CAS Google Scholar
  21. Irvine, D.J., Purbhoo, M.A., Krogsgaard, M. & Davis, M.M. Direct observation of ligand recognition by T cells. Nature 419, 845–849 (2002).
    Article CAS Google Scholar
  22. Li, Q.J. et al. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat. Immunol. 5, 791–799 (2004).
    Article CAS Google Scholar
  23. Purbhoo, M.A., Irvine, D.J., Huppa, J.B. & Davis, M.M. T cell killing does not require the formation of a stable mature immunological synapse. Nat. Immunol. 5, 524–530 (2004).
    Article CAS Google Scholar
  24. Felix, N.J. et al. Alloreactive T cells respond specifically to multiple distinct peptide-MHC complexes. Nat. Immunol. 8, 388–397 (2007).
    Article CAS Google Scholar
  25. Marrack, P., Ignatowicz, L., Kappler, J.W., Boymel, J. & Freed, J.H. Comparison of peptides bound to spleen and thymus class II. J. Exp. Med. 178, 2173–2183 (1993).
    Article CAS Google Scholar
  26. Hayashi, H. et al. Molecular cloning and characterization of the gene encoding mouse melanoma antigen by cDNA library transfection. J. Immunol. 149, 1223–1229 (1992).
    CAS PubMed Google Scholar
  27. Wu, T., Yan, Y. & Kozak, C.A. Rmcf2, a xenotropic provirus in the Asian mouse species Mus castaneus, blocks infection by polytropic mouse gammaretroviruses. J. Virol. 79, 9677–9684 (2005).
    Article CAS Google Scholar
  28. Okazaki, N. et al. Prediction of the coding sequences of mouse homologues of KIAA gene: II. The complete nucleotide sequences of 400 mouse KIAA-homologous cDNAs identified by screening of terminal sequences of cDNA clones randomly sampled from size-fractionated libraries. DNA Res. 10, 35–48 (2003).
    Article CAS Google Scholar
  29. Lo, W.-L., Felix, N.J., Walters, J.J., Rohrs, H., Gross, M.L. & Allen, P.M. An endogenous peptide positively selects and augments the activation and survival of peripheral CD4+ T cells. Nat. Immunol. advance online publication, doi:10.1038/ni.1796 (4 October 2009).
  30. Krogsgaard, M. et al. Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature 434, 238–243 (2005).
    Article CAS Google Scholar
  31. Ma, Z., Sharp, K.A., Janmey, P.A. & Finkel, T.H. Surface-anchored monomeric agonist pMHCs alone trigger TCR with high sensitivity. PLoS Biol. 6, e43 (2008).
    Article Google Scholar
  32. Baldwin, K.K., Reay, P.A., Wu, L., Farr, A. & Davis, M.M.A. T cell receptor-specific blockade of positive selection. J. Exp. Med. 189, 13–24 (1999).
    Article CAS Google Scholar
  33. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).
    Article Google Scholar
  34. Goodnow, C.C. Multistep pathogenesis of autoimmune disease. Cell 130, 25–35 (2007).
    Article CAS Google Scholar
  35. Reddy, J. et al. Detection of autoreactive myelin proteolipid protein 139–151-specific T cells by using MHC II (IAs) tetramers. J. Immunol. 170, 870–877 (2003).
    Article CAS Google Scholar
  36. Danke, N.A., Koelle, D.M., Yee, C., Beheray, S. & Kwok, W.W. Autoreactive T cells in healthy individuals. J. Immunol. 172, 5967–5972 (2004).
    Article CAS Google Scholar
  37. Feinerman, O., Veiga, J., Dorfman, J.R., Germain, R.N. & Altan-Bonnet, G. Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science 321, 1081–1084 (2008).
    Article CAS Google Scholar
  38. Yasutomo, K., Doyle, C., Miele, L., Fuchs, C. & Germain, R.N. The duration of antigen receptor signalling determines CD4+ versus CD8+ T-cell lineage fate. Nature 404, 506–510 (2000).
    Article CAS Google Scholar
  39. Reay, P.A., Kantor, R.M. & Davis, M.M. Use of global amino acid replacements to define the requirements for MHC binding and T cell recognition of moth cytochrome c (93–103). J. Immunol. 152, 3946–3957 (1994).
    CAS PubMed Google Scholar
  40. Stefanski, H.E., Jameson, S.C. & Hogquist, K.A. Positive selection is limited by available peptide-dependent MHC conformations. J. Immunol. 164, 3519–3526 (2000).
    Article CAS Google Scholar
  41. Huseby, E.S. et al. How the T cell repertoire becomes peptide and MHC specific. Cell 122, 247–260 (2005).
    Article CAS Google Scholar
  42. Sporri, R. & Reis e Sousa, C. Self peptide/MHC class I complexes have a negligible effect on the response of some CD8+ T cells to foreign antigen. Eur. J. Immunol. 32, 3161–3170 (2002).
    Article CAS Google Scholar
  43. Yachi, P.P., Lotz, C., Ampudia, J. & Gascoigne, N.R. T cell activation enhancement by endogenous pMHC acts for both weak and strong agonists but varies with differentiation state. J. Exp. Med. 204, 2747–2757 (2007).
    Article CAS Google Scholar
  44. Garcia, K.C. et al. CD8 enhances formation of stable -cel T-cell receptor/MHC class I molecule complexes. Nature 384, 577–581 (1996).
    Article CAS Google Scholar
  45. Davis, M.M. et al. T cells as a self-referential, sensory organ. Annu. Rev. Immunol. 25, 681–695 (2007).
    Article CAS Google Scholar
  46. Fink, P.J. & Bevan, M.J. H-2 antigens of the thymus determine lymphocyte specificity. J. Exp. Med. 148, 766–775 (1978).
    Article CAS Google Scholar
  47. Scott-Browne, J.P., White, J., Kappler, J.W., Gapin, L. & Marrack, P. Germline-encoded amino acids in the αβ T-cell receptor control thymic selection. Nature 458, 1043–1046 (2009).
    Article CAS Google Scholar
  48. Zerrahn, J., Held, W. & Raulet, D.H. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell 88, 627–636 (1997).
    Article CAS Google Scholar
  49. Chu, H.H. et al. Positive selection optimizes the number and function of MHCII-restricted CD4+ T cell clones in the naive polyclonal repertoire. Proc. Natl. Acad. Sci. USA 106, 11241–11245 (2009).
    Article CAS Google Scholar
  50. Krogsgaard, M., Juang, J. & Davis, M.M. A role for “self” in T-cell activation. Semin. Immunol. 19, 236–244 (2007).
    Article CAS Google Scholar
  51. Richie, L.I. et al. Imaging synapse formation during thymocyte selection: inability of CD3ζ to form a stable central accumulation during negative selection. Immunity 16, 595–606 (2002).
    Article CAS Google Scholar
  52. Altman, J.D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).
    Article CAS Google Scholar
  53. Gudmundsdottir, H., Wells, A.D. & Turka, L.A. Dynamics and requirements of T cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity. J. Immunol. 162, 5212–5223 (1999).
    CAS PubMed Google Scholar

Download references