Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22 (original) (raw)
Dumoutier, L., Louahed, J. & Renauld, J.C. Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J. Immunol.164, 1814–1819 (2000). CASPubMed Google Scholar
Dumoutier, L., Van Roost, E., Colau, D. & Renauld, J.C. Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc. Natl. Acad. Sci. USA97, 10144–10149 (2000). CASPubMedPubMed Central Google Scholar
Pestka, S. et al. Interleukin-10 and related cytokines and receptors. Annu. Rev. Immunol.22, 929–979 (2004). CASPubMed Google Scholar
Kotenko, S.V. et al. Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rβ) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. J. Biol. Chem.276, 2725–2732 (2001). CASPubMed Google Scholar
Xie, M.H. et al. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2–4 and IL-22R. J. Biol. Chem.275, 31335–31339 (2000). CASPubMed Google Scholar
Li, J. et al. Temporal associations between interleukin 22 and the extracellular domains of IL-22R and IL-10R2. Int. Immunopharmacol.4, 693–708 (2004). CASPubMed Google Scholar
Logsdon, N.J., Jones, B.C., Josephson, K., Cook, J. & Walter, M.R. Comparison of interleukin-22 and interleukin-10 soluble receptor complexes. J. Interferon Cytokine Res.22, 1099–1112 (2002). CASPubMed Google Scholar
Lejeune, D. et al. Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10. J. Biol. Chem.277, 33676–33682 (2002). CASPubMed Google Scholar
Dumoutier, L., Lejeune, D., Colau, D. & Renauld, J.C. Cloning and characterization of IL-22 binding protein, a natural antagonist of IL-10-related T cell-derived inducible factor/IL-22. J. Immunol.166, 7090–7095 (2001). CASPubMed Google Scholar
Kotenko, S.V. et al. Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J. Immunol.166, 7096–7103 (2001). CASPubMed Google Scholar
Xu, W. et al. A soluble class II cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist. Proc. Natl. Acad. Sci. USA98, 9511–9516 (2001). CASPubMedPubMed Central Google Scholar
Tachiiri, A. et al. Genomic structure and inducible expression of the IL-22 receptor alpha chain in mice. Genes Immun.4, 153–159 (2003). CASPubMed Google Scholar
Wolk, K. et al. IL-22 increases the innate immunity of tissues. Immunity21, 241–254 (2004). CASPubMed Google Scholar
Liang, S.C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med.203, 2271–2279 (2006). CASPubMedPubMed Central Google Scholar
Liang, S.C. et al. IL-22 induces an acute-phase response. J. Immunol.185, 5531–5538 (2010). CASPubMed Google Scholar
Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med.14, 282–289 (2008). CASPubMed Google Scholar
Sonnenberg, G.F. et al. Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. J. Exp. Med.207, 1293–1305 (2010). CASPubMedPubMed Central Google Scholar
Zenewicz, L.A. et al. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity27, 647–659 (2007). CASPubMedPubMed Central Google Scholar
Radaeva, S., Sun, R., Pan, H.N., Hong, F. & Gao, B. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology39, 1332–1342 (2004). CASPubMed Google Scholar
Wolk, K. et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur. J. Immunol.36, 1309–1323 (2006). CASPubMed Google Scholar
Aujla, S.J. et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med.14, 275–281 (2008). CASPubMedPubMed Central Google Scholar
Boniface, K. et al. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J. Immunol.174, 3695–3702 (2005). CASPubMed Google Scholar
Eyerich, S. et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest.119, 3573–3585 (2009). CASPubMedPubMed Central Google Scholar
Wilson, M.S. et al. Redundant and pathogenic roles for IL-22 in mycobacterial, protozoan, and helminth infections. J. Immunol.184, 4378–4390 (2010). CASPubMed Google Scholar
Munoz, M. et al. Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17. J. Exp. Med.206, 3047–3059 (2009). CASPubMedPubMed Central Google Scholar
Guo, H. & Topham, D.J. IL-22 production by pulmonary natural killer cells and the potential role of IL-22 during primary influenza infection. J. Virol.84, 7750–7759 (2010). CASPubMedPubMed Central Google Scholar
De Luca, A. et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol.3, 361–373 (2010). CASPubMed Google Scholar
Sonnenberg, G.F., Monticelli, L.A., Elloso, M.M., Fouser, L.A. & Artis, D. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity34, 122–134 (2011). CASPubMed Google Scholar
Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature445, 648–651 (2007). CASPubMed Google Scholar
Ma, H.L. et al. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J. Clin. Invest.118, 597–607 (2008). CASPubMedPubMed Central Google Scholar
Geboes, L. et al. Proinflammatory role of the Th17 cytokine interleukin-22 in collagen-induced arthritis in C57BL/6 mice. Arthritis Rheum.60, 390–395 (2009). CASPubMed Google Scholar
Kreymborg, K. et al. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J. Immunol.179, 8098–8104 (2007). CASPubMed Google Scholar
Sugimoto, K. et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest.118, 534–544 (2008). CASPubMedPubMed Central Google Scholar
Zenewicz, L.A. et al. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity29, 947–957 (2008). CASPubMedPubMed Central Google Scholar
Pickert, G. et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med.206, 1465–1472 (2009). CASPubMedPubMed Central Google Scholar
Guilloteau, K. et al. Skin inflammation induced by the synergistic action of IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α recapitulates some features of psoriasis. J. Immunol.184, 5263–5270 (2010). CASPubMed Google Scholar
Wolk, K., Kunz, S., Asadullah, K. & Sabat, R. Cutting edge: immune cells as sources and targets of the IL-10 family members? J. Immunol.168, 5397–5402 (2002). CASPubMed Google Scholar
Awasthi, A. et al. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J. Immunol.182, 5904–5908 (2009). CASPubMed Google Scholar
Spits, H. & Di Santo, J.P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol.12, 21–27 (2011). CASPubMed Google Scholar
Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity29, 958–970 (2008). CASPubMed Google Scholar
Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity33, 736–751 (2010). CASPubMedPubMed Central Google Scholar
Meier, D. et al. Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity26, 643–654 (2007). CASPubMed Google Scholar
Schmutz, S. et al. Cutting edge: IL-7 regulates the peripheral pool of adult RORγ+ lymphoid tissue inducer cells. J. Immunol.183, 2217–2221 (2009). CASPubMed Google Scholar
Luci, C. et al. Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nat. Immunol.10, 75–82 (2009). CASPubMed Google Scholar
Sanos, S.L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol.10, 83–91 (2009). CASPubMed Google Scholar
Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature457, 722–725 (2009). CASPubMed Google Scholar
Eisenring, M., vom Berg, J., Kristiansen, G., Saller, E. & Becher, B. IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat. Immunol.11, 1030–1038 (2010). CASPubMed Google Scholar
Takatori, H. et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med.206, 35–41 (2009). CASPubMedPubMed Central Google Scholar
Cupedo, T. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+CD127+ natural killer-like cells. Nat. Immunol.10, 66–74 (2009). CASPubMed Google Scholar
Scandella, E. et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat. Immunol.9, 667–675 (2008). CASPubMed Google Scholar
Eberl, G. & Littman, D.R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science305, 248–251 (2004). ArticleCASPubMed Google Scholar
Tsuji, M. et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity29, 261–271 (2008). CASPubMed Google Scholar
Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature453, 106–109 (2008). CASPubMed Google Scholar
Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature464, 1371–1375 (2010). CASPubMedPubMed Central Google Scholar
Crellin, N.K., Trifari, S., Kaplan, C.D., Cupedo, T. & Spits, H. Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J. Exp. Med.207, 281–290 (2010). CASPubMedPubMed Central Google Scholar
Satoh-Takayama, N. et al. IL-7 and IL-15 independently program the differentiation of intestinal CD3−NKp46+ cell subsets from Id2-dependent precursors. J. Exp. Med.207, 273–280 (2010). CASPubMedPubMed Central Google Scholar
Sawa, S. et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science330, 665–669 (2010). CASPubMed Google Scholar
Cella, M., Otero, K. & Colonna, M. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1β reveals intrinsic functional plasticity. Proc. Natl. Acad. Sci. USA107, 10961–10966 (2010). CASPubMedPubMed Central Google Scholar
Hughes, T. et al. Interleukin-1β selectively expands and sustains interleukin-22+ immature human natural killer cells in secondary lymphoid tissue. Immunity32, 803–814 (2010). CASPubMedPubMed Central Google Scholar
Marchesi, F. et al. CXCL13 expression in the gut promotes accumulation of IL-22-producing lymphoid tissue-inducer cells, and formation of isolated lymphoid follicles. Mucosal Immunol.2, 486–494 (2009). CASPubMed Google Scholar
Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature456, 507–510 (2008). CASPubMed Google Scholar
Hughes, T. et al. Stage 3 immature human natural killer cells found in secondary lymphoid tissue constitutively and selectively express the TH 17 cytokine interleukin-22. Blood113, 4008–4010 (2009). CASPubMedPubMed Central Google Scholar
Crellin, N.K. et al. Regulation of cytokine secretion in human CD127+ LTi-like innate lymphoid cells by Toll-like receptor 2. Immunity33, 752–764 (2010). CASPubMed Google Scholar
Bonneville, M., O'Brien, R.L. & Born, W.K. γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol.10, 467–478 (2010). CASPubMed Google Scholar
Sutton, C.E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity31, 331–341 (2009). CASPubMed Google Scholar
Martin, B., Hirota, K., Cua, D.J., Stockinger, B. & Veldhoen, M. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity31, 321–330 (2009). CASPubMed Google Scholar
Ness-Schwickerath, K.J., Jin, C. & Morita, C.T. Cytokine requirements for the differentiation and expansion of IL-17A- and IL-22-producing human Vγ2Vδ2 T cells. J. Immunol.184, 7268–7280 (2010). CASPubMed Google Scholar
Goto, M. et al. Murine NKT cells produce Th17 cytokine interleukin-22. Cell. Immunol.254, 81–84 (2009). CASPubMed Google Scholar
Doisne, J.M. et al. Cutting edge: Crucial role of IL-1 and IL-23 in the innate IL-17 response of peripheral lymph node NK1.1- invariant NKT cells to bacteria. J. Immunol.186, 662–666 (2011). CASPubMed Google Scholar
Wahl, C., Wegenka, U.M., Leithauser, F., Schirmbeck, R. & Reimann, J. IL-22-dependent attenuation of T cell-dependent (ConA) hepatitis in herpes virus entry mediator deficiency. J. Immunol.182, 4521–4528 (2009). CASPubMed Google Scholar
Pan, H., Hong, F., Radaeva, S. & Gao, B. Hydrodynamic gene delivery of interleukin-22 protects the mouse liver from concanavalin A-, carbon tetrachloride-, and Fas ligand-induced injury via activation of STAT3. Cell. Mol. Immunol.1, 43–49 (2004). CASPubMed Google Scholar
Volpe, E. et al. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nat. Immunol.9, 650–657 (2008). CASPubMed Google Scholar
Volpe, E. et al. Multiparametric analysis of cytokine-driven human Th17 differentiation reveals a differential regulation of IL-17 and IL-22 production. Blood114, 3610–3614 (2009). CASPubMed Google Scholar
Liang, S.C. et al. An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J. Immunol.179, 7791–7799 (2007). CASPubMed Google Scholar
Wilson, N.J. et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol.8, 950–957 (2007). CASPubMed Google Scholar
Ciric, B., El-behi, M., Cabrera, R., Zhang, G.-X. & Rostami, A. IL-23 drives pathogenic IL-17-producing CD8+ T cells. J. Immunol.182, 5296–5305 (2009). CASPubMed Google Scholar
Hamada, H. et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J. Immunol.182, 3469–3481 (2009). CASPubMed Google Scholar
Kuang, D.M. et al. Tumor-activated monocytes promote expansion of IL-17-producing CD8+ T cells in hepatocellular carcinoma patients. J. Immunol.185, 1544–1549 (2010). CASPubMed Google Scholar
Res, P.C. et al. Overrepresentation of IL-17A and IL-22 producing CD8 T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis. PLoS ONE5, e14108 (2010). PubMedPubMed Central Google Scholar
Nograles, K.E. et al. IL-22-producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J. Allergy Clin. Immunol.123, 1244–1252 (2009). CASPubMedPubMed Central Google Scholar
Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. & Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol.10, 857–863 (2009). CASPubMed Google Scholar
Trifari, S., Kaplan, C.D., Tran, E.H., Crellin, N.K. & Spits, H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nat. Immunol.10, 864–871 (2009). CASPubMed Google Scholar
Fujita, H. et al. Human Langerhans cells induce distinct IL-22-producing CD4+ T cells lacking IL-17 production. Proc. Natl. Acad. Sci. USA106, 21795–21800 (2009). CASPubMedPubMed Central Google Scholar
de Jong, A. et al. CD1a-autoreactive T cells are a normal component of the human αβ T cell repertoire. Nat. Immunol.11, 1102–1109 (2010). CASPubMedPubMed Central Google Scholar
Boniface, K. et al. A role for T cell-derived interleukin 22 in psoriatic skin inflammation. Clin. Exp. Immunol.150, 407–415 (2007). CASPubMedPubMed Central Google Scholar
Colin, E.M. et al. 1,25-dihydroxyvitamin D3 modulates Th17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis. Arthritis Rheum.62, 132–142 (2010). CASPubMed Google Scholar
Ikeuchi, H. et al. Expression of interleukin-22 in rheumatoid arthritis: potential role as a proinflammatory cytokine. Arthritis Rheum.52, 1037–1046 (2005). CASPubMed Google Scholar
Pène, J. et al. Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. J. Immunol.180, 7423–7430 (2008). PubMed Google Scholar
Shen, H., Goodall, J.C. & Hill Gaston, J.S. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum.60, 1647–1656 (2009). CASPubMed Google Scholar
Liu, H. et al. The expression of interleukin-22 and S100A7, A8, A9 mRNA in patients with psoriasis vulgaris. J. Huazhong Univ. Sci. Technolog. Med. Sci.27, 605–607 (2007). CASPubMed Google Scholar
Schmechel, S. et al. Linking genetic susceptibility to Crohn's disease with Th17 cell function: IL-22 serum levels are increased in Crohn's disease and correlate with disease activity and IL23R genotype status. Inflamm. Bowel Dis.14, 204–212 (2008). PubMed Google Scholar
Sekikawa, A. et al. Involvement of the IL-22/REG Iα axis in ulcerative colitis. Lab. Invest.90, 496–505 (2010). CASPubMed Google Scholar
Wolk, K. et al. IL-22 induces lipopolysaccharide-binding protein in hepatocytes: a potential systemic role of IL-22 in Crohn's disease. J. Immunol.178, 5973–5981 (2007). CASPubMed Google Scholar
Yamamoto-Furusho, J.K. et al. Colonic epithelial upregulation of interleukin 22 (IL-22) in patients with ulcerative colitis. Inflamm. Bowel Dis.16, 1823 (2010). PubMed Google Scholar
Brand, S. et al. IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am. J. Physiol. Gastrointest. Liver Physiol.290, G827–G838 (2006). CASPubMed Google Scholar
Kleinschek, M.A. et al. Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J. Exp. Med.206, 525–534 (2009). CASPubMedPubMed Central Google Scholar
Pitta, M.G.R. et al. IL-17 and IL-22 are associated with protection against human kala azar caused by Leishmania donovani. J. Clin. Invest.119, 2379–2387 (2009). CASPubMedPubMed Central Google Scholar
Ma, C.S. et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J. Exp. Med.205, 1551–1557 (2008). CASPubMedPubMed Central Google Scholar
Milner, J.D. et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature452, 773–776 (2008). CASPubMedPubMed Central Google Scholar
Holland, S.M. et al. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med.357, 1608–1619 (2007). CASPubMed Google Scholar
Minegishi, Y. et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature448, 1058–1062 (2007). CASPubMed Google Scholar
Kisand, K. et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med.207, 299–308 (2010). CASPubMedPubMed Central Google Scholar
Puel, A. et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med.207, 291–297 (2010). CASPubMedPubMed Central Google Scholar
Duerr, R.H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314, 1461–1463 (2006). CASPubMedPubMed Central Google Scholar
Mannon, P.J. et al. Anti-interleukin-12 antibody for active Crohn's disease. N. Engl. J. Med.351, 2069–2079 (2004). CASPubMed Google Scholar
Kauffman, C.L. et al. A phase I study evaluating the safety, pharmacokinetics, and clinical response of a human IL-12 p40 antibody in subjects with plaque psoriasis. J. Invest. Dermatol.123, 1037–1044 (2004). CASPubMed Google Scholar
Bonnet, F. et al. Trends and determinants of severe morbidity in HIV-infected patients: the ANRS CO3 Aquitaine Cohort, 2000–2004. HIV Med.8, 547–554 (2007). CASPubMed Google Scholar
Lewden, C. et al. Changes in causes of death among adults infected by HIV between 2000 and 2005: The “Mortalite 2000 and 2005” surveys (ANRS EN19 and Mortavic). J. Acquir. Immune Defic. Syndr.48, 590–598 (2008). PubMed Google Scholar
Wallace, J.M. et al. Respiratory illness in persons with human immunodeficiency virus infection. The Pulmonary Complications of HIV Infection Study Group. Am. Rev. Respir. Dis.148, 1523–1529 (1993). CASPubMed Google Scholar