The death effector domain protein family: regulators of cellular homeostasis (original) (raw)
Itoh, N. & Nagata, S. A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J. Biol. Chem.268, 10932–10937 (1993). CASPubMed Google Scholar
Tartaglia, L.A., Ayres, T.M., Wong, G.H. & Goeddel, D.V. A novel domain within the 55 kD TNF receptor signals cell death. Cell74, 845–853 (1993). ArticleCASPubMed Google Scholar
Boldin, M.P. et al. A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J. Biol. Chem.270, 7795–7798 (1995). ArticleCASPubMed Google Scholar
Chinnaiyan, A.M., O'Rourke, K., Tewari, M. & Dixit, V.M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell81, 505–512 (1995). ArticleCASPubMed Google Scholar
Fernandes-Alnemri, T. et al. In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc. Natl. Acad. Sci. USA93, 7464–7469 (1996). ArticleCASPubMedPubMed Central Google Scholar
Muzio, M., Stockwell, B.R., Stennicke, H.R., Salvasen, G.S. & Dixit, V.M. An induced proximity model for caspase-8 activation. J. Biol. Chem.273, 2926–2930 (1998). ArticleCASPubMed Google Scholar
Kischkel, F.C. et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J. Biol. Chem.276, 46639–46646 (2001). ArticleCASPubMed Google Scholar
Martin, D.A., Siegel, R.M., Zheng, L. & Lenardo, M.J. Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHα1) death signal. J. Biol. Chem.273, 4345–4349 (1998). ArticleCASPubMed Google Scholar
Wang, J., Chun, H.J., Wong, W., Spencer, D.M. & Lenardo, M.J. Caspase-10 is an initiator caspase in death receptor signaling. Proc. Natl. Acad. Sci. USA98, 13884–13888 (2001). ArticleCASPubMedPubMed Central Google Scholar
Boldin, M.P., Goncharov, T.M., Goltsev, Y.V. & Wallach, D.I. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/Apo-1 and TNF receptor-induced cell death. Cell85, 803–815 (1996). ArticleCASPubMed Google Scholar
Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell85, 817–827 (1996). ArticleCASPubMed Google Scholar
Weber, C.H. & Vincenz, C. The death domain superfamily: a tale of two interfaces? Trends Biochem. Sci.26, 475–481 (2001). ArticleCASPubMed Google Scholar
Eberstadt, M. et al. NMR structure and mutagenesis of the FADD (MORT1) death-effector domain. Nature392, 941–945 (1998). ArticleCASPubMed Google Scholar
Hofmann, K. The modular nature of apoptotic signaling proteins. Cell. Mol. Life Sci.55, 1113–1128 (1999). ArticleCASPubMed Google Scholar
Martinon, F., Hofman, K. & Tschopp, J. The pyrin domain: a possible member of the death domain family implicated in apoptosis and inflammation. Curr. Biol.11, R118–R120 (2001). ArticleCASPubMed Google Scholar
Hofmann, K., Bucher, P. & Tschopp, J. The CARD domain: a new apoptotic signalling motif. Trends Biochem. Sci.22, 155–156 (1997). ArticleCASPubMed Google Scholar
Garvey, T.L. et al. Binding of FADD and caspase-8 to molluscum contagiosum virus MC159 v-FLIP is not sufficient for its antiapoptotic function. J. Virol.76, 697–706 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hu, S. & Yang, X. dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD. J. Biol. Chem.275, 30761–30764 (2000). ArticleCASPubMed Google Scholar
Lee, S.W., Ko, Y.G., Bang, S., Kim, K.S. & Kim, S. Death effector domain of a mammalian apoptosis mediator, FADD, induces bacterial cell death. Mol. Microbiol.35, 1540–1549 (2000). ArticleCASPubMed Google Scholar
Siegel, R.M. et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science288, 2354–2357 (2000). ArticleCASPubMed Google Scholar
Kaufmann, M. et al. Identification of a basic surface area of the FADD death effector domain critical for apoptotic signaling. FEBS Lett.527, 250–254 (2002). ArticleCASPubMed Google Scholar
Weber, C.H. & Vincenz, C. A docking model of key components of the DISC complex: death domain superfamily interactions redefined. FEBS Lett.492, 171–176 (2001). ArticleCASPubMed Google Scholar
Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science268, 1347–1349 (1995). ArticleCASPubMed Google Scholar
Fisher, G.H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell81, 935–946 (1995). ArticleCASPubMed Google Scholar
Sneller, M.C. et al. Clinical, immunologic, and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood89, 1341–1348 (1997). CASPubMed Google Scholar
Yang, X., Chang, H.Y. & Baltimore, D. Autoproteolytic activation of pro-caspases by oligomerization. Mol. Cell1, 319–325 (1998). ArticleCASPubMed Google Scholar
Jaattela, M. & Tschopp, J. Caspase-independent cell death in T lymphocytes. Nat. Immunol.4, 416–423.
Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol.1, 489–495 (2000). ArticleCASPubMed Google Scholar
Li, M. & Beg, A.A. Induction of necrotic-like cell death by tumor necrosis factor-α and caspase inhibitors: novel mechanism for killing virus-infected cells. J. Virol.74, 7470–7477 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bertin, J. et al. Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis. Proc. Natl. Acad. Sci. USA94, 1172–1176 (1997). ArticleCASPubMedPubMed Central Google Scholar
Hu, S., Vincenz, C., Buller, M. & Dixit, V.M. A novel family of viral death effector domain-containing molecules that inhibit both CD95- and tumor necrosis factor receptor-1–induced apoptosis. J. Biol. Chem.272, 9621–9624 (1997). ArticleCASPubMed Google Scholar
Thome, M. et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature386, 517–521 (1997). ArticleCASPubMed Google Scholar
Garvey, T.L., Bertin, J., Siegel, R.M., Lenardo, M.J. & Cohen, J. The death effector domains (DEDs) of the molluscum contagiosum virus MC159 v-FLIP protein are not functionally interchangeable with each other or with the DEDs of caspase-8. Virology300, 217–225 (2002). ArticleCASPubMed Google Scholar
Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature388, 190–195 (1997). ArticleCASPubMed Google Scholar
Hu, S., Vincenz, C., Ni, J., Gentz, R. & Dixit, V.M. I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1– and CD-95–induced apoptosis. J. Biol. Chem.272, 17255–17257 (1997). ArticleCASPubMed Google Scholar
Kreuz, S., Siegmund, D., Scheurich, P. & Wajant, H. NF-κB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol. Cell. Biol.21, 3964–3973 (2001). ArticleCASPubMedPubMed Central Google Scholar
Michaeu, O., Lens, S., Gaide, O., Alevizopoulos, K. & Tschopp, J. NF-κB signals induce the expression of c-FLIP. Mol. Cell. Biol.21, 5299–5305 (2001). Article Google Scholar
Thomas, R.K. et al. Constituitive expression of c-FLIP in Hodgkin and Reed-Sternberg cells. Amer. J. of Path.160, 1521–1528 (2002). ArticleCAS Google Scholar
Chang, D.W. et al. c-FLIPL is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J.21, 3704–3714 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lens, S. et al. The caspase 8 inhibitor c-FLIPL modulates T-cell receptor–induced proliferation but not activation-induced cell death of lymphoctyes. Mol. Cell. Biol.22, 5419–5433 (2002). ArticleCASPubMedPubMed Central Google Scholar
Condorelli, G. et al. PED/PEA-15: an anti-apoptotic molecule that regulates FAS/TNFR1-induced apoptosis. Oncogene18, 4409–4415 (1999). ArticleCASPubMed Google Scholar
Kitsberg, D. et al. Knock-out of the neural death effector domain protein PEA-15 demonstrates that its expression protects astrocytes from TNFα-induced apoptosis. J. Neuroscience19, 8244–8251 (1999). ArticleCAS Google Scholar
Araujo, H., Danziger, N., Cordier, J., Glowinski, J. & Chneiweiss, H. Characterization of PEA-15, a major substrate for protein kinase C in astrocytes. J. Biol. Chem.268, 5911–5920 (1993). CASPubMed Google Scholar
Kubes, M., Cordier, J., Glowinski, J., Girault, J.A. & Chneiweiss, H. Endothelin induces a calcium-dependent phosphorylation of PEA-15 in intact astrocytes: identification of Ser104 and Ser116 phosphorylated, respectively, by protein kinase C and calcium/calmodulin kinase II in vitro. J. Neurochem.71, 1307–1314 (1998). ArticleCASPubMed Google Scholar
Gomez-Angelats, M. & Cidlowski, J.A. Protein kinase C regulates FADD recruitment and death-inducing signaling complex formation in Fas/CD95-induced apoptosis. J. Biol. Chem.276, 44944–44952 (2001). ArticleCASPubMed Google Scholar
Xiao, C., Yang, B.F., Asadi, N., Beguinot, F. & Hao, C. Tumor necrosis factor-related apoptosis-inducing ligand-induced death-inducing signaling complex and its modulation by c-FLIP and PED/PEA-15 in glioma cells. J. Biol. Chem.277, 25020–25025 (2002). ArticleCASPubMed Google Scholar
Estelles, A., Charlton, C.A. & Blau, H.M. The phosphoprotein PEA-15 inhibits Fas- but increases TNF-R1 mediated caspase-8 activity and apoptosis. Dev. Biol.216, 16–28 (1999). ArticleCASPubMed Google Scholar
Schickling, O., Stegh, A.H., Byrd, J. & Peter, M.E. Nuclear localization of DEDD leads to caspase-6 activation through its death effector domain and inhibition of RNA polymerase I dependent transcription. Cell Death Differ.8, 1157–1161 (2001). ArticleCASPubMed Google Scholar
Roth, W., Stenner-Liewen, F., Pawlowski, K., Godzik, A. & Reed, J.C. Identification and characterization of DEDD2, a death effector domain-containing protein. J. Biol. Chem.277, 7501–7508 (2002). ArticleCASPubMed Google Scholar
Zheng, L., Schickling, O., Peter, M.E. & Lenardo, M.J. The death effector domain-associated factor plays distinct regulatory roles in the nucleus and cytoplasm. J. Biol. Chem.276, 31945–31952 (2001). ArticleCASPubMed Google Scholar
Ng, F.W. et al. p28 Bap31, a Bcl-2/Bcl-XL– and procaspase-8–associated protein in the endoplasmic reticulum. J. Cell Biol.139, 327–338 (1997). ArticleCASPubMedPubMed Central Google Scholar
Zhang, H. et al. BAR: an apoptosis regulator at the intersection of caspases and Bcl-2 family proteins. Proc. Natl. Acad. Sci. USA97, 2597–2602 (2000). ArticleCASPubMedPubMed Central Google Scholar
Stegh, A.H. et al. Inactivation of caspase-8 on mitochondria of Bcl-xL-expressing MCF7-Fas cells: role for bifunctional apoptosis regulator protein. J. Biol. Chem.277, 4351–4360 (2002). ArticleCASPubMed Google Scholar
Nguyen, M., Breckenridge, D.G., Ducret, A. & Shore, G.C. Caspase-resistant BAP31 inhibits Fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. Mol. Cell. Biol.20, 6731–6740 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wang, B. et al. Uncleaved BAP31 in association with A4 protein at the endoplasmic reticulum is an inhibitor of Fas-initiated release of cytochrome c from mitochondria. J. Biol. Chem. advance online publication, 15 January 2003 (doi:10.1074/jbc.M209684200).
Siegel, R.M. et al. Death-effector filaments: novel cytoplasmic structures that recruit caspases and trigger apoptosis. J. Cell. Biol.141, 1243–1253 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zhang, J., Cado, D., Chen, A., Kabra, N.H. & Winoto, A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature392, 296–300 (1998). ArticleCASPubMed Google Scholar
Walsh, C.M. et al. A Role for FADD in T cell activation and development. Immunity8, 439–449 (1998). ArticleCASPubMed Google Scholar
Newton, K., Harris, A.W., Bath, M.L., Smith, K.G. & Strasser, A. A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymhocytes. EMBO J.17, 706–718 (1998). ArticleCASPubMedPubMed Central Google Scholar
Mack, A. & Hacker, G. Inhibition of caspase or FADD function blocks proliferation but not MAP kinase activation and interleukin-2 production during primary stimulation of T cells. Eur. J. Immunol.32, 1986–1992 (2002). ArticleCASPubMed Google Scholar
Alam, A., Cohen, L.Y., Aouad, S. & Sekaly, R.P. Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J. Exp. Med.190, 1879–1890 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kennedy, N.J., Kataoka, T., Tschopp, J. & Budd, R.C. Caspase activation is required for T cell proliferation. J. Exp. Med.190, 1891–1896 (1999). ArticleCASPubMedPubMed Central Google Scholar
Chun, H. et al. Pleiotropic lymphocyte activation defects due to caspase-8 mutation causes human immunodeficiency. Nature419, 395–399 (2002). ArticleCASPubMed Google Scholar
Chaudhary, P.M. et al. Activation of the NF-κB pathway by caspase 8 and its homologs. Oncogene19, 4451–4460 (2000). ArticleCASPubMed Google Scholar
Hu, W.H., Johnson, H. & Shu, H.B. Activation of NF-κB by FADD, Casper, and Caspase 8. J. Biol. Chem.275, 10838–10844 (2000). ArticleCASPubMed Google Scholar
Wang, J. et al. Inherited caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell98, 47–58 (1999). ArticleCASPubMed Google Scholar
Kataoka, T. et al. The caspase-8 inhibitor FLIP promotes activation of NF-κB and Erk signaling pathways. Curr. Biol.10, 640–648 (2000). ArticleCASPubMed Google Scholar
Alderson, M.R. et al. Fas transduces activation signals in normal human T lymphocytes. J. Exp. Med.178, 1891–1896 (1993). Google Scholar
Ramos, J.W. et al. Death effector domain protein PEA-15 potentiates Ras activation of extracellular signal receptor-activated kinase by an adhesion-independent mechanism. Mol. Biol. Cell11, 2863–2872 (2000). ArticleCASPubMedPubMed Central Google Scholar
Formstecher, E. et al. PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev. Cell1, 239–250 (2001). ArticleCASPubMed Google Scholar
Gervais, F.G. et al. Recruitment and activation of caspase-8 by the Huntington-interacting protein Hip-1 and a novel partner Hippi. Nat. Cell Biol.4, 95–105 (2002). ArticleCASPubMed Google Scholar