The evolutionary history of lymphoid organs (original) (raw)
Porter, R. The Greatest Benefit to Mankind: A Medical History of Humanity from Antiquity to the Present (Harper-Collins, New York, 1997). Google Scholar
Miller, J.F. Immunological function of the thymus. Lancet2, 748–749 (1961). ArticleCAS Google Scholar
Le Douarin, N. The microenvironment of T and B lymphocyte differentiation in avian embryos. Curr. Top. Dev. Biol.20, 291–313 (1986). ArticleCAS Google Scholar
Tonegawa, S. Somatic generation of antibody diversity. Nature302, 575–581 (1983). ArticleCAS Google Scholar
Pancer, Z. & Cooper, M.D. The evolution of adaptive immunity. Annu. Rev. Immunol.24, 497–518 (2006). ArticleCAS Google Scholar
Watson, F.L. et al. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science18, 1826–1827 (2005). Google Scholar
Royet, J., Reichhart, J.M. & Hoffmann, J.A. Sensing and signaling during infection in Drosophila. Curr. Opin. Immunol.17, 11–17 (2005). ArticleCAS Google Scholar
Dong, Y., Taylor, H.E. & Dimopoulos, G. AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol.4, e229 (2006). Article Google Scholar
Alder, M.N. et al. Diversity and function of adaptive immune receptors in a jawless vertebrate. Science310, 1970–1973 (2005). ArticleCAS Google Scholar
Davis, M.M. & Bjorkman, P.J. T-cell antigen receptor genes and T-cell recognition. Nature334, 395–402 (1988). ArticleCAS Google Scholar
Boehm, T. Quality control in self/nonself discrimination. Cell125, 845–858 (2006). ArticleCAS Google Scholar
Medzhitov, R. & Janeway, C.A., Jr. Decoding the patterns of self and nonself by the innate immune system. Science296, 298–300 (2002). ArticleCAS Google Scholar
Meylan, E., Tschopp, J. & Karin, M. Intracellular pattern recognition receptors in the host response. Nature442, 39–44 (2006). CASPubMed Google Scholar
Pancer, Z. et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature430, 174–180 (2004). ArticleCAS Google Scholar
Pancer, Z. et al. Variable lymphocyte receptors in hagfish. Proc. Natl. Acad. Sci. USA102, 9224–9229 (2005). ArticleCAS Google Scholar
Cannon, J.P., Haire, R.N., Rast, J.P. & Litman, G.W. The phylogenetic origins of the antigen-binding receptors and somatic diversification mechanisms. Immunol. Rev.200, 12–22 (2004). ArticleCAS Google Scholar
Kondo, M., Scherer, D.C., King, A.G., Manz, M.G. & Weissman, I.L. Lymphocyte development from hematopoietic stem cells. Curr. Opin. Genet. Dev.11, 520–526 (2001). ArticleCAS Google Scholar
Hardy, R.R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol.19, 595–621 (2001). ArticleCAS Google Scholar
Schwarz, B.A. & Bhandoola, A. Trafficking from the bone marrow to the thymus: a prerequisite for thymopoiesis. Immunol. Rev.209, 47–57 (2006). Article Google Scholar
Boehm, T. & Bleul, C.C. Thymus-homing precursors and the thymic microenvironment. Trends Immunol.27, 477–484 (2006). ArticleCAS Google Scholar
Du Pasquier, L. Ontogeny of the immune response in cold-blooded vertebrates. Curr. Top. Microbiol. Immunol.61, 37–88 (1973). CASPubMed Google Scholar
Knight, K.L. & Crane, M.A. Generating the antibody repertoire in rabbit. Adv. Immunol.56, 179–218 (1994). ArticleCAS Google Scholar
Tagaya, H. et al. Intramedullary and extramedullary B lymphopoiesis in osteopetrotic mice. Blood95, 3363–3370 (2000). CASPubMed Google Scholar
Li, J. et al. B lymphocytes from early vertebrates have potent phagocytic and microbicidal abilities. Nat. Immunol.7, 1116–1124 (2006). ArticleCAS Google Scholar
Cumano, A., Paige, C.J., Iscove, N.N. & Brady, G. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature356, 612–615 (1992). ArticleCAS Google Scholar
Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Bipotential B-macrophage progenitors are present in adult bone marrow. Nat. Immunol.2, 83–88 (2001). ArticleCAS Google Scholar
Ardavin, C.F. & Zapata, A. Ultrastructure and changes during metamorphosis of the lympho-hemopoietic tissue of the larval anadromous sea lamprey Petromyzon marinus. Dev. Comp. Immunol.11, 79–93 (1987). ArticleCAS Google Scholar
Shintani, S. et al. Do lampreys have lymphocytes? The Spi evidence. Proc. Natl. Acad. Sci. USA97, 7417–7422 (2000). ArticleCAS Google Scholar
Ardavin, C.F. & Zapata, A. The pharyngeal lymphoid tissue of lampreys. A morpho-functional equivalent of the vertebrate thymus? Thymus11, 59–65 (1988). CASPubMed Google Scholar
Pancer, Z., Mayer, W.E., Klein, J. & Cooper, M.D. Prototypic T cell receptor and CD4-like coreceptor are expressed by lymphocytes in the agnathan sea lamprey. Proc. Natl. Acad. Sci. USA101, 13273–13278 (2004). ArticleCAS Google Scholar
Sakano, H., Huppi, K., Heinrich, G. & Tonegawa, S. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature280, 288–294 (1979). ArticleCAS Google Scholar
Agrawal, A., Eastman, Q.M. & Schatz, D.G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature394, 744–751 (1998). ArticleCAS Google Scholar
Hiom, K., Melek, M. & Gellert, M. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell94, 463–470 (1998). ArticleCAS Google Scholar
Kapitonov, V.V. & Jurka, J. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol3, e181 (2005). Article Google Scholar
Eason, D.D. et al. Mechanisms of antigen receptor evolution. Semin. Immunol.16, 215–226 (2004). ArticleCAS Google Scholar
Boehm, T. Co-evolution of a primordial peptide-presentation system and cellular immunity. Nat. Rev. Immunol.6, 79–84 (2006). ArticleCAS Google Scholar
Dishaw, L.J., Smith, S.L. & Bigger, C.H. Characterization of a C3-like cDNA in a coral: phylogenetic implications. Immunogenetics57, 1–14 (2005). Article Google Scholar
Litman, G.W., Cannon, J.P. & Dishaw, L.J. Reconstructing immune phylogeny: new perspectives. Nat. Rev. Immunol.5, 866–879 (2005). ArticleCAS Google Scholar
Nemazee, D. Receptor editing in lymphocyte development and central tolerance. Nat. Rev. Immunol.6, 728–740 (2006). ArticleCAS Google Scholar
Nehls, M. et al. Two genetically separable steps in the differentiation of thymic epithelium. Science272, 886–889 (1996). ArticleCAS Google Scholar
Drayton, D.L., Liao, S., Mounzer, R.H. & Ruddle, N.H. Lymphoid organ development: from ontogeny to neogenesis. Nat. Immunol.7, 344–353 (2006). ArticleCAS Google Scholar
Austen, K.F. & Fearon, D.T. A molecular basis of activation of the alternative pathway of human complement. Adv. Exp. Med. Biol.120B, 3–17 (1979). CASPubMed Google Scholar
Matsunaga, T. & Rahman, A. What brought the adaptive immune system to vertebrates?–The jaw hypothesis and the seahorse. Immunol. Rev.166, 177–186 (1998). ArticleCAS Google Scholar
Kyewski, B. & Derbinski, J. Self-representation in the thymus: an extended view. Nat. Rev. Immunol.4, 688–698 (2004). ArticleCAS Google Scholar
Cordier, A.C. & Haumont, S.M. Development of thymus, parathyroids, and ultimo-branchial bodies in NMRI and nude mice. Am. J. Anat.157, 227–263 (1980). ArticleCAS Google Scholar
Rossi, S.W., Jenkinson, W.E., Anderson, G. & Jenkinson, E.J. Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature441, 988–991 (2006). ArticleCAS Google Scholar
Bleul, C.C. et al. Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature441, 992–996 (2006). ArticleCAS Google Scholar