Lymphoid organ development: from ontogeny to neogenesis (original) (raw)
Eikelenboom, P., Nassy, J.J., Post, J., Versteeg, J.C. & Langevoort, H.L. The histogenesis of lymph nodes in rat and rabbit. Anat. Rec.190, 201–215 (1978). ArticleCASPubMed Google Scholar
Sabin, F.R. On the origin of the lymphatic system from the veins, and the development of the lymph hearts and thoracic duct in the pig. Am. J. Anat.1, 367–389 (1902). Article Google Scholar
Sabin, F.R. On the development of the superficial lymphatics in the skin of the pig. Am. J. Anat.3, 183–195 (1904). Article Google Scholar
Huntington, G.S. & McClure, C.F.W. The anatomy and development of the jugular lymph sac in the domestic cat (Felis Domestica). Am. J. Anat.10, 177–311 (1910). Article Google Scholar
Wigle, J.T. et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J.21, 1505–1513 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wigle, J.T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell98, 769–778 (1999). ArticleCASPubMed Google Scholar
Schacht, V. et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J.22, 3546–3556 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yoshida, H. et al. Expression of α4β7 integrin defines a distinct pathway of lymphoid progenitors committed to T cells, fetal intestinal lymphotoxin producer, NK, and dendritic cells. J. Immunol.167, 2511–2521 (2001). ArticleCASPubMed Google Scholar
Eberl, G. et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol.5, 64–73 (2004). ArticleCASPubMed Google Scholar
Yoshida, H. et al. IL-7 receptor α+ CD3− cells in the embryonic intestine induces the organizing center of Peyer's patches. Int. Immunol.11, 643–655 (1999). ArticleCASPubMed Google Scholar
Rennert, P.D., Browning, J.L., Mebius, R., Mackay, F. & Hochman, P.S. Surface lymphotoxin α/β complex is required for the development of peripheral lymphoid organs. J. Exp. Med.184, 1999–2006 (1996). ArticleCASPubMed Google Scholar
Girard, J.P. & Springer, T.A. High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol. Today16, 449–457 (1995). ArticleCASPubMed Google Scholar
Miyasaka, M. & Tanaka, T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat. Rev. Immunol.4, 360–370 (2004). ArticleCASPubMed Google Scholar
Gallatin, W.M., Weissman, I.L. & Butcher, E.C. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature304, 30–34 (1983). ArticleCASPubMed Google Scholar
Streeter, P.R., Rouse, B.T. & Butcher, E.C. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J. Cell Biol.107, 1853–1862 (1988). ArticleCASPubMed Google Scholar
Hemmerich, S., Butcher, E.C. & Rosen, S.D. Sulfation-dependent recognition of HEV-ligands by L-selectin and MECA-79, an adhesion-blocking mAb. J. Exp. Med.180, 2219–2226 (1994). ArticleCASPubMed Google Scholar
Rosen, S.D. Endothelial ligands for L-selectin: from lymphocyte recirculation to allograft rejection. Am. J. Pathol.155, 1013–1020 (1999). ArticleCASPubMedPubMed Central Google Scholar
Maly, P. et al. The α(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell86, 643–653 (1996). ArticleCASPubMed Google Scholar
Bistrup, A. et al. Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin. J. Cell Biol.145, 899–910 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hiraoka, N. et al. A novel, high endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl Lewis(x), an L-selectin ligand displayed by CD34. Immunity11, 79–89 (1999). ArticleCASPubMed Google Scholar
Homeister, J.W. et al. The α(1,3)fucosyltransferases FucT-IV and FucT-VII exert collaborative control over selectin-dependent leukocyte recruitment and lymphocyte homing. Immunity15, 115–126 (2001). ArticleCASPubMed Google Scholar
Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell74, 185–195 (1993). ArticleCASPubMed Google Scholar
Mebius, R.E., Streeter, P.R., Michie, S., Butcher, E.C. & Weissman, I.L. A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+CD3− cells to colonize lymph nodes. Proc. Natl. Acad. Sci. USA93, 11019–11024 (1996). ArticleCASPubMedPubMed Central Google Scholar
Locksley, R.M., Killeen, N. & Lenardo, M.J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell104, 487–501 (2001). ArticleCASPubMed Google Scholar
Aggarwal, B.B. Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol.3, 745–756 (2003). ArticleCASPubMed Google Scholar
Ware, C.F., Vanarsdale, T.L., Crowe, P.D. & Browning, J.L. The ligands and receptors of the lymphotoxin system. Curr. Top. Microbiol. Immunol.198, 175–218 (1995). CASPubMed Google Scholar
Browning, J.L. et al. Lymphotoxin-β, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell72, 847–856 (1993). ArticleCASPubMed Google Scholar
Force, W.R. et al. Mouse lymphotoxin-β receptor. Molecular genetics, ligand binding, and expression. J. Immunol.155, 5280–5288 (1995). CASPubMed Google Scholar
De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science264, 703–707 (1994). ArticleCASPubMed Google Scholar
Banks, T.A. et al. Lymphotoxin-α-deficient mice: effects on secondary lymphoid organ development and humoral immune responsiveness. J. Immunol.155, 1685–1693 (1995). CASPubMed Google Scholar
Ying, X., Chan, K., Shenoy, P., Hill, M. & Ruddle, N.H. Lymphotoxin plays a crucial role in the development and function of nasal-associated lymphoid tissue through regulation of chemokines and peripheral node addressin. Am. J. Pathol.166, 135–146 (2005). ArticleCASPubMedPubMed Central Google Scholar
Fukuyama, S. et al. Initiation of NALT organogenesis is independent of the IL-7R, LTβR, and NIK signaling pathways but requires the Id2 gene and CD3−CD4+CD45+ cells. Immunity17, 31–40 (2002). ArticleCASPubMed Google Scholar
Sacca, R., Turley, S., Soong, L., Mellman, I. & Ruddle, N.H. Transgenic expression of lymphotoxin restores lymph nodes to lymphotoxin-α-deficient mice. J. Immunol.159, 4252–4260 (1997). CASPubMed Google Scholar
Alimzhanov, M.B. et al. Abnormal development of secondary lymphoid tissues in lymphotoxin β-deficient mice. Proc. Natl. Acad. Sci. USA94, 9302–9307 (1997). ArticleCASPubMedPubMed Central Google Scholar
Koni, P.A. et al. Distinct Roles in lymphoid organogenesis for lymphotoxins α and β in lymphotoxin-β deficient mice. Immunity6, 491–500 (1997). ArticleCASPubMed Google Scholar
Rennert, P.D., Browning, J.L. & Hochman, P.S. Selective disruption of lymphotoxin ligands reveals a novel set of mucosal lymph nodes and unique effects on lymph node cellular organization. Int. Immunol.9, 1627–1639 (1997). ArticleCASPubMed Google Scholar
Soderberg, K.A., Linehan, M.M., Ruddle, N.H. & Iwasaki, A. MAdCAM-1 expressing sacral lymph node in the lymphotoxin β-deficient mouse provides a site for immune generation following vaginal herpes simplex virus-2 infection. J. Immunol.173, 1908–1913 (2004). ArticleCASPubMed Google Scholar
Drayton, D.L., Ying, X., Lee, J., Lesslauer, W. & Ruddle, N.H. Ectopic LT αβ directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J. Exp. Med.197, 1153–1163 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ngo, V.N. et al. Lymphotoxin α/β and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med.189, 403–412 (1999). ArticleCASPubMedPubMed Central Google Scholar
Browning, J.L. et al. Lymphotoxin-β receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity23, 539–550 (2005). ArticleCASPubMed Google Scholar
Randolph, G.J., Angeli, V. & Swartz, M.A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol.5, 617–628 (2005). ArticleCASPubMed Google Scholar
Luther, S.A., Tang, H.L., Hyman, P.L., Farr, A.G. & Cyster, J.G. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl. Acad. Sci. USA97, 12694–12699 (2000). ArticleCASPubMedPubMed Central Google Scholar
Saeki, H., Moore, A.M., Brown, M.J. & Hwana, S.T. Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J. Immunol.162, 2472–2475 (1999). CASPubMed Google Scholar
Legler, D.F. et al. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J. Exp. Med.187, 655–660 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bleul, C.C., Fuhlbrigge, R.C., Casasnovas, J.M., Aiuti, A. & Springer, T.A. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med.184, 1101–1109 (1996). ArticleCASPubMed Google Scholar
Bouneaud, C., Kourilsky, P. & Bousso, P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity13, 829–840 (2000). ArticleCASPubMed Google Scholar
Hemmi, H. et al. Skin antigens in the steady state are trafficked to regional lymph nodes by transforming growth factor-β1-dependent cells. Int. Immunol.13, 695–704 (2001). ArticleCASPubMed Google Scholar
Scheinecker, C., McHugh, R., Shevach, E.M. & Germain, R.N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med.196, 1079–1090 (2002). ArticleCASPubMedPubMed Central Google Scholar
Huang, F.P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med.191, 435–444 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wilson, N.S. & Villadangos, J.A. Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm. Immunol. Cell Biol.82, 91–98 (2004). ArticlePubMed Google Scholar
Wilson, N.S., El-Sukkari, D. & Villadangos, J.A. Dendritic cells constitutively present self antigens in their immature state in vivo and regulate antigen presentation by controlling the rates of MHC class II synthesis and endocytosis. Blood103, 2187–2195 (2004). ArticleCASPubMed Google Scholar
Steinman, R.M. et al. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann. NY Acad. Sci.987, 15–25 (2003). ArticleCASPubMed Google Scholar
Cavanagh, L.L. & Von Andrian, U.H. Travellers in many guises: the origins and destinations of dendritic cells. Immunol. Cell Biol.80, 448–462 (2002). ArticlePubMed Google Scholar
Wilson, N.S. et al. Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood102, 2187–2194 (2003). ArticleCASPubMed Google Scholar
Stoitzner, P., Tripp, C.H., Douillard, P., Saeland, S. & Romani, N. Migratory Langerhans cells in mouse lymph nodes in steady state and inflammation. J. Invest. Dermatol.125, 116–125 (2005). ArticleCASPubMed Google Scholar
Cupedo, T., Jansen, W., Kraal, G. & Mebius, R.E. Induction of secondary and tertiary lymphoid structures in the skin. Immunity21, 655–667 (2004). ArticleCASPubMed Google Scholar
Hall, J.G., Hopkins, J. & Reynolds, J. Studies of efferent lymph cells from nodes stimulated with oxazolone. Immunology39, 141–149 (1980). CASPubMedPubMed Central Google Scholar
Hall, J.G. & Smith, M.E. Studies on the afferent and efferent lymph of lymph nodes draining the site of application of fluorodinitrobenzene (FDNB). Immunology21, 69–79 (1971). CASPubMedPubMed Central Google Scholar
He, C. et al. Stimulation of regional lymphatic and blood flow by epicutaneous oxazolone. J. Appl. Physiol.93, 966–973 (2002). ArticleCASPubMed Google Scholar
West, C.A. et al. Stochastic regulation of cell migration from the efferent lymph to oxazolone-stimulated skin. J. Immunol.166, 1517–1523 (2001). ArticleCASPubMed Google Scholar
Hay, J.B., Cahill, R.N. & Trnka, Z. The kinetics of antigen-reactive cells during lymphocyte recruitment. Cell. Immunol.10, 145–153 (1974). ArticleCASPubMed Google Scholar
Cahill, R.N., Frost, H. & Trnka, Z. The effects of antigen on the migration of recirculating lymphocytes through single lymph nodes. J. Exp. Med.143, 870–888 (1976). ArticleCASPubMed Google Scholar
Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J. Exp. Med.200, 783–795 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hay, J.B. & Hobbs, B.B. The flow of blood to lymph nodes and its relation to lymphocyte traffic and the immune response. J. Exp. Med.145, 31–44 (1977). ArticleCASPubMed Google Scholar
Ottaway, C.A. & Parrott, D.M. Regional blood flow and its relationship to lymphocyte and lymphoblast traffic during a primary immune reaction. J. Exp. Med.150, 218–230 (1979). ArticleCASPubMed Google Scholar
Bai, Y. et al. L-selectin-dependent lymphoid occupancy is required to induce alloantigen-specific tolerance. J. Immunol.168, 1579–1589 (2002). ArticleCASPubMed Google Scholar
Soderberg, K.A. et al. Innate control of adaptive immunity via remodeling of lymph node feed arteriole. Proc. Natl. Acad. Sci. USA102, 16315–16320 (2005). ArticleCASPubMedPubMed Central Google Scholar
Myking, A.O. Morphological changes in paracortical high endothelial venules to single and repeated application of oxazolone to mouse skin. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol.35, 63–71 (1980). ArticleCASPubMed Google Scholar
Mebius, R.E., Breve, J., Duijvestijn, A.M. & Kraal, G. The function of high endothelial venules in mouse lymph nodes stimulated by oxazolone. Immunology71, 423–427 (1990). CASPubMedPubMed Central Google Scholar
Hoke, D. et al. Selective modulation of the expression of L-selectin ligands by an immune response. Curr. Biol.5, 670–678 (1995). ArticleCASPubMed Google Scholar
Swarte, V.V. et al. Regulation of fucosyltransferase-VII expression in peripheral lymph node high endothelial venules. Eur. J. Immunol.28, 3040–3047 (1998). ArticleCASPubMed Google Scholar
Goeringer, G.C. & Vidic, B. The embryogenesis and anatomy of Waldeyer's ring. Otolaryngol. Clin. North Am.20, 207–217 (1987). ArticleCASPubMed Google Scholar
Harmsen, A. et al. Cutting edge: organogenesis of nasal-associated lymphoid tissue (NALT) occurs independently of lymphotoxin-alpha (LTα) and retinoic acid receptor-related orphan receptor-γ, but the organization of NALT is LTα dependent. J. Immunol.168, 986–990 (2002). ArticleCASPubMed Google Scholar
Hameleers, D.M., van der Ende, M., Biewenga, J. & Sminia, T. An immunohistochemical study on the postnatal development of rat nasal-associated lymphoid tissue (NALT). Cell Tissue Res.256, 431–438 (1989). ArticleCASPubMed Google Scholar
Constant, S.L. et al. Resident lung antigen-presenting cells have the capacity to promote Th2 T cell differentiation in situ. J. Clin. Invest.110, 1441–1448 (2002). ArticleCASPubMedPubMed Central Google Scholar
Moyron-Quiroz, J.E. et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat. Med.10, 927–934 (2004). ArticleCASPubMed Google Scholar
Lorenz, R.G. & Newberry, R.D. Isolated lymphoid follicles can function as sites for induction of mucosal immune responses. Ann. NY Acad. Sci.1029, 44–57 (2004). ArticleCASPubMed Google Scholar
Eberl, G. Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway? Nat. Rev. Immunol.5, 413–420 (2005). ArticleCASPubMed Google Scholar
Finke, D., Acha-Orbea, H., Mattis, A., Lipp, M. & Kraehenbuhl, J. CD4+CD3- cells induce Peyer's patch development: role of α4β1 integrin activation by CXCR5. Immunity17, 363–373 (2002). ArticleCASPubMed Google Scholar
Kratz, A., Campos-Neto, A., Hanson, M.S. & Ruddle, N.H. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J. Exp. Med.183, 1461–1472 (1996). ArticleCASPubMed Google Scholar
Yeaman, G.R. et al. Unique CD8+ T cell-rich lymphoid aggregates in human uterine endometrium. J. Leukoc. Biol.61, 427–435 (1997). ArticleCASPubMed Google Scholar
Bistrup, A. et al. Detection of a sulfotransferase (HEC-GlcNAc6ST) in high endothelial venules of lymph nodes and in high endothelial venule-like vessels within ectopic lymphoid aggregates: relationship to the MECA-79 epitope. Am. J. Pathol.164, 1635–1644 (2004). ArticleCASPubMedPubMed Central Google Scholar
Pablos, J.L. et al. A HEV-restricted sulfotransferase is expressed in rheumatoid arthritis synovium and is induced by lymphotoxin-α/β and TNF-α in cultured endothelial cells. BMC Immunol.6, 6 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Kerjaschki, D. et al. Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J. Am. Soc. Nephrol.15, 603–612 (2004). ArticleCASPubMed Google Scholar
Luther, S.A., Ansel, K.M. & Cyster, J.G. Overlapping roles of CXCL13, interleukin 7 receptor α, and CCR7 ligands in lymph node development. J. Exp. Med.197, 1191–1198 (2003). ArticleCASPubMedPubMed Central Google Scholar
Paavonen, K. et al. Vascular endothelial growth factors C and D and their VEGFR-2 and 3 receptors in blood and lymphatic vessels in healthy and arthritic synovium. J. Rheumatol.29, 39–45 (2002). CASPubMed Google Scholar
Maruyama, K. et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J. Clin. Invest.115, 2363–2372 (2005). ArticleCASPubMedPubMed Central Google Scholar
Cursiefen, C. et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Invest.113, 1040–1050 (2004). ArticleCASPubMedPubMed Central Google Scholar
Baluk, P. et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J. Clin. Invest.115, 247–257 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kaiserling, E. Newly-formed lymph nodes in the submucosa in chronic inflammatory bowel disease. Lymphology34, 22–29 (2001). CASPubMed Google Scholar
Heikenwalder, M. et al. Chronic lymphocytic inflammation specifies the organ tropism of prions. Science307, 1107–1110 (2005). ArticleCASPubMed Google Scholar
Gause, A. et al. The B lymphocyte in rheumatoid arthritis: analysis of rearranged V kappa genes from B cells infiltrating the synovial membrane. Eur. J. Immunol.25, 2775–2782 (1995). ArticleCASPubMed Google Scholar
Schroder, A.E., Greiner, A., Seyfert, C. & Berek, C. Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc. Natl. Acad. Sci. USA93, 221–225 (1996). ArticleCASPubMedPubMed Central Google Scholar
Dorner, T., Hansen, A., Jacobi, A. & Lipsky, P.E. Immunglobulin repertoire analysis provides new insights into the immunopathogenesis of Sjögren's syndrome. Autoimmun. Rev.1, 119–124 (2002). ArticleCASPubMed Google Scholar
Sims, G.P., Shiono, H., Willcox, N. & Stott, D.I. Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis. J. Immunol.167, 1935–1944 (2001). ArticleCASPubMed Google Scholar
Stott, D.I., Hiepe, F., Hummel, M., Steinhauser, G. & Berek, C. Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjögren's syndrome. J. Clin. Invest.102, 938–946 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kim, H.J., Krenn, V., Steinhauser, G. & Berek, C. Plasma cell development in synovial germinal centers in patients with rheumatoid and reactive arthritis. J. Immunol.162, 3053–3062 (1999). CASPubMed Google Scholar
McMahon, E.J., Bailey, S.L., Castenada, C.V., Waldner, H. & Miller, S.D. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med.11, 335–339 (2005). ArticleCASPubMed Google Scholar
Schrama, D. et al. Targeting of lymphotoxin-α to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity14, 111–121 (2001). ArticleCASPubMed Google Scholar
Kaufman, D.L. et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature366, 69–72 (1993). ArticleCASPubMedPubMed Central Google Scholar
Aguzzi, A. & Heikenwalder, M. Prions, cytokines, and chemokines: a meeting in lymphoid organs. Immunity22, 145–154 (2005). ArticleCASPubMed Google Scholar
Seeger, H. et al. Coincident scrapie infection and nephritis lead to urinary prion excretion. Science310, 324–326 (2005). ArticleCASPubMed Google Scholar
Hjelmstrom, P. Lymphoid neogenesis: de novo formation of lymphoid tissue in chronic inflammation through expression of homing chemokines. J. Leukoc. Biol.69, 331–339 (2001). CASPubMed Google Scholar
Wotherspoon, A.C. et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet342, 575–577 (1993). ArticleCASPubMed Google Scholar
Freni, M.A. et al. Focal lymphocytic aggregates in chronic hepatitis C: occurrence, immunohistochemical characterization, and relation to markers of autoimmunity. Hepatology22, 389–394 (1995). ArticleCASPubMed Google Scholar
Yu, P. et al. Priming of naive T cells inside tumors leads to eradication of established tumors. Nat. Immunol.5, 141–149 (2004). ArticleCASPubMed Google Scholar
Wu, Q. et al. Reversal of spontaneous autoimmune insulitis in nonobese diabetic mice by soluble lymphotoxin receptor. J. Exp. Med.193, 1327–1332 (2001). ArticleCASPubMedPubMed Central Google Scholar
Fava, R.A. et al. A role for the lymphotoxin/LIGHT axis in the pathogenesis of murine collagen-induced arthritis. J. Immunol.171, 115–126 (2003). ArticleCASPubMed Google Scholar
Young, C.L., Adamson, T.C.I., Vaughan, J.H. & Fox, R.I. Immunohistologic characterization of synovial membrane lymphocytes in rheumatoid arthritis. Arthritis Rheum.27, 32–39 (1984). ArticleCASPubMed Google Scholar
Takemura, S. et al. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol.167, 1072–1080 (2001). ArticleCASPubMed Google Scholar
Zvaifler, N.J. The immunopathology of joint inflammation in rheumatoid arthritis. Adv. Immunol.16, 265–336 (1973). ArticleCASPubMed Google Scholar
Tsubaki, T. et al. Accumulation of plasma cells expressing CXCR3 in the synovial sublining regions of early rheumatoid arthritis in association with production of Mig/CXCL9 by synovial fibroblasts. Clin. Exp. Immunol.141, 363–371 (2005). ArticleCASPubMedPubMed Central Google Scholar
Shi, K. et al. Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients. J. Immunol.166, 650–655 (2001). ArticleCASPubMed Google Scholar
Amft, N. et al. Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjögren's syndrome. Arthritis Rheum.44, 2633–2641 (2001). ArticleCASPubMed Google Scholar
Barone, F. et al. Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjögren's syndrome. Arthritis Rheum.52, 1773–1784 (2005). ArticleCASPubMed Google Scholar
Salomonsson, S. et al. Expression of the B cell-attracting chemokine CXCL13 in the target organ and autoantibody production in ectopic lymphoid tissue in the chronic inflammatory disease Sjögren's syndrome. Scand. J. Immunol.55, 336–342 (2002). ArticleCASPubMed Google Scholar
Murai, H., Hara, H., Hatae, T., Kobayashi, T. & Watanabe, T. Expression of CD23 in the germinal center of thymus from myasthenia gravis patients. J. Neuroimmunol.76, 61–69 (1997). ArticleCASPubMed Google Scholar
Söderström, N. & Biörklund, A. Organization of the invading lymphoid tissue in human lymphoid thyroiditis. Scand. J. Immunol.3, 295–301 (1974). Article Google Scholar
Armengol, M.P. et al. Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers. Am. J. Pathol.159, 861–873 (2001). ArticleCASPubMedPubMed Central Google Scholar
Armengol, M.P. et al. Chemokines determine local lymphoneogenesis and a reduction of circulating CXCR4+ T and CCR7 B and T lymphocytes in thyroid autoimmune diseases. J. Immunol.170, 6320–6328 (2003). ArticleCASPubMed Google Scholar
Duijvestijn, A.M. et al. High endothelial differentiation in human lymphoid and inflammatory tissues defined by monoclonal antibody HECA-452. Am. J. Pathol.130, 147–155 (1988). CASPubMedPubMed Central Google Scholar
Prineas, J.W. Multiple sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science203, 1123–1125 (1979). ArticleCASPubMed Google Scholar
Prineas, J.W. & Wright, R.G. Macrophages, lymphocytes, and plasma cells in the perivascular compartment in chronic multiple sclerosis. Lab. Invest.38, 409–421 (1978). CASPubMed Google Scholar
Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E. & Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol.14, 164–174 (2004). ArticlePubMed Google Scholar
Pashenkov, M., Soderstrom, M. & Link, H. Secondary lymphoid organ chemokines are elevated in the cerebrospinal fluid during central nervous system inflammation. J. Neuroimmunol.135, 154–160 (2003). ArticleCASPubMed Google Scholar
Carlsen, H.S., Baekkevold, E.S., Morton, H.C., Haraldsen, G. & Brandtzaeg, P. Monocyte-like and mature macrophages produce CXCL13 (B-cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood (2004).
Hanninen, A., Jaakkola, I. & Jalkanen, S. Mucosal addressin is required for the development of diabetes in nonobese diabetic mice. J. Immunol.160, 6018–6025 (1998). CASPubMed Google Scholar
Yang, X.D., Sytwu, H.K., McDevitt, H.O. & Michie, S.A. Involvement of β7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in the development of diabetes in obese diabetic mice. Diabetes46, 1542–1547 (1997). ArticleCASPubMed Google Scholar
Cannella, B., Cross, A.H. & Raine, C.S. Upregulation and coexpression of adhesion molecules correlate with relapsing autoimmune demyelination in the central nervous system. J. Exp. Med.172, 1521–1524 (1990). ArticleCASPubMed Google Scholar
Columba-Cabezas, S., Serafini, B., Ambrosini, E. & Aloisi, F. Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol.13, 38–51 (2003). ArticlePubMed Google Scholar
Magliozzi, R., Columba-Cabezas, S., Serafini, B. & Aloisi, F. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol.148, 11–23 (2004). ArticleCASPubMed Google Scholar
Mooij, P., de Wit, H.J. & Drexhage, H.A. An excess of dietary iodine accelerates the development of a thyroid-associated lymphoid tissue in autoimmune prone BB rats. Clin. Immunol. Immunopathol.69, 189–198 (1993). ArticleCASPubMed Google Scholar
Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Th1-biased tertiary lymphoid tissue supported by CXC chemokine ligand 13-producing stromal network in chronic lesions of autoimmune gastritis. J. Immunol.171, 4359–4368 (2003). ArticleCASPubMed Google Scholar
Steere, A.C., Duray, P.H. & Butcher, E.C. Spirochetal antigens and lymphoid cell surface markers in Lyme synovitis. Comparison with rheumatoid synovium and tonsillar lymphoid tissue. Arthritis Rheum.31, 487–495 (1988). ArticleCASPubMed Google Scholar
Ghosh, S., Steere, A.C., Stollar, B.D. & Huber, B.T. In situ diversification of the antibody repertoire in chronic Lyme arthritis synovium. J. Immunol.174, 2860–2869 (2005). ArticleCASPubMed Google Scholar
Rupprecht, T.A. et al. The chemokine CXCL13 (BLC): a putative diagnostic marker for neuroborreliosis. Neurology65, 448–450 (2005). ArticleCASPubMed Google Scholar
Narayan, K. et al. The nervous system as ectopic germinal center: CXCL13 and IgG in lyme neuroborreliosis. Ann. Neurol.57, 813–823 (2005). ArticleCASPubMed Google Scholar
Hillan, K.J. et al. Expression of the mucosal vascular addressin, MAdCAM-1, in inflammatory liver disease. Liver19, 509–518 (1999). ArticleCASPubMed Google Scholar
Mazzucchelli, L. et al. BCA-1 is highly expressed in _Helicobacter pylori_-induced mucosa-associated lymphoid tissue and gastric lymphoma. J. Clin. Invest.104, R49–R54 (1999). ArticleCASPubMedPubMed Central Google Scholar
Dogan, A., Du, M., Koulis, A., Briskin, M.J. & Isaacson, P.G. Expression of lymphocyte homing receptors and vascular addressins in low-grade gastric B-cell lymphomas of mucosa-associated lymphoid tissue. Am. J. Pathol.151, 1361–1369 (1997). CASPubMedPubMed Central Google Scholar
Kobayashi, M. et al. Induction of peripheral lymph node addressin in human gastric mucosa infected by Helicobacter pylori. Proc. Natl. Acad. Sci. USA101, 17807–17812 (2004). ArticleCASPubMedPubMed Central Google Scholar
Shomer, N.H., Fox, J.G., Juedes, A.E. & Ruddle, N.H. _Helicobacter_-induced chronic active lymphoid aggregates have characteristics of tertiary lymphoid tissue. Infect. Immun.71, 3572–3577 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yoneyama, H. et al. Regulation by chemokines of circulating dendritic cell precursors, and the formation of portal tract-associated lymphoid tissue, in a granulomatous liver disease. J. Exp. Med.193, 35–49 (2001). ArticleCASPubMedPubMed Central Google Scholar
Vermi, W. et al. Role of dendritic cell-derived CXCL13 in the pathogenesis of Bartonella henselae B-rich granuloma. Blood (2005).
Baddoura, F.K. et al. Lymphoid neogenesis in murine cardiac allografts undergoing chronic rejection. Am. J. Transplant.5, 510–516 (2005). ArticlePubMed Google Scholar
Thaunat, O. et al. Lymphoid neogenesis in chronic rejection: evidence for a local humoral alloimmune response. Proc. Natl. Acad. Sci. USA102, 14723–14728 (2005). ArticleCASPubMedPubMed Central Google Scholar
Houtkamp, M.A., de Boer, O.J., van der Loos, C.M., van der Wal, A.C. & Becker, A.E. Adventitial infiltrates associated with advanced atherosclerotic plaques: structural organization suggests generation of local humoral immune responses. J. Pathol.193, 263–269 (2001). ArticleCASPubMed Google Scholar
Sacca, R., Cuff, C.A., Lesslauer, W. & Ruddle, N.H. Differential activities of secreted lymphotoxin-α3 and membrane lymphotoxin-α1β2 in lymphotoxin-induced inflammation: critical role of TNF receptor 1 signaling. J. Immunol.160, 485–491 (1998). CASPubMed Google Scholar
Fan, L., Reilly, C.R., Luo, Y., Dorf, M.E. & Lo, D. Cutting edge: ectopic expression of the chemokine TCA4/SLC is sufficient to trigger lymphoid neogenesis. J. Immunol.164, 3955–3959 (2000). ArticleCASPubMed Google Scholar
Luther, S.A. et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J. Immunol.169, 424–433 (2002). ArticleCASPubMed Google Scholar
Chen, S.C. et al. Ectopic expression of the murine chemokines CCL21a and CCL21b induces the formation of lymph node-like structures in pancreas, but not skin, of transgenic mice. J. Immunol.168, 1001–1008 (2002). ArticleCASPubMed Google Scholar
Martin, A.P. et al. A novel model for lymphocytic infiltration of the thyroid gland generated by transgenic expression of the CC chemokine CCL21. J. Immunol.173, 4791–4798 (2004). ArticleCASPubMed Google Scholar