Distinct lineages of TH1 cells have differential capacities for memory cell generation in vivo (original) (raw)
References
Abbas, A.K., Murphy, K.M. & Sher, A. Functional diversity of helper T lymphocytes. Nature383, 787–793 (1996). ArticleCASPubMed Google Scholar
O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity8, 275–283 (1998). ArticleCASPubMed Google Scholar
Murphy, K.M. et al. Signaling and transcription in T helper development. Annu. Rev. Immunol.18, 451–494 (2000). ArticleCASPubMed Google Scholar
Mullen, A.C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science292, 1907–1910 (2001). ArticleCASPubMed Google Scholar
Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science272, 54–60 (1996). ArticleCASPubMed Google Scholar
Dutton, R.W., Bradley, L.M. & Swain, S.L. T cell memory. Annu. Rev. Immunol.16, 201–223 (1998). ArticleCASPubMed Google Scholar
Swain, S.L. Generation and in vivo persistence of polarized TH1 and TH2 memory cells. Immunity1, 543–552 (1994). ArticleCASPubMed Google Scholar
Swain, S.L., Hu, H. & Huston, G. Class II-independent generation of CD4 memory T cells from effectors. Science286, 1381–1383 (1999). ArticleCASPubMed Google Scholar
Stobie, L. et al. The role of antigen and IL-12 in sustaining TH1 memory cells in vivo: IL-12 is required to maintain memory/effector TH1 cells sufficient to mediate protection to an infectious parasite challenge. Proc. Natl. Acad. Sci. USA97, 8427–8432 (2000). ArticleCASPubMedPubMed Central Google Scholar
Park, A.Y., Hondowicz, B.D. & Scott, P. IL-12 is required to maintain a TH1 response during Leishmania major infection. J. Immunol.165, 896–902 (2000). ArticleCASPubMed Google Scholar
Yap, G., Pesin, M. & Sher, A. IL-12 is required for the maintenance of IFN-γ production in T cells mediating chronic resistance to the intracellular pathogen, Toxoplasma gondii. J. Immunol.165, 628–631 (2000). ArticleCASPubMed Google Scholar
Leonard, J.P., Waldburger, K.E. & Goldman, S.J. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J. Exp. Med.181, 381–386 (1995). ArticleCASPubMed Google Scholar
Neurath, M.F., Fuss, I., Kelsall, B.L., Stuber, E. & Strober, W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J. Exp. Med.182, 1281–1290 (1995). ArticleCASPubMed Google Scholar
Tarrant, T.K., Silver, P.B., Chan, C.C., Wiggert, B. & Caspi, R.R. Endogenous IL-12 is required for induction and expression of experimental autoimmune uveitis. J. Immunol.161, 122–127 (1998). CASPubMed Google Scholar
Hong, K., Berg, E.L. & Ehrhardt, R.O. Persistence of pathogenic CD4+ TH1-like cells in vivo in the absence of IL-12 but in the presence of autoantigen. J. Immunol.166, 4765–4772 (2001). ArticleCASPubMed Google Scholar
Mendel, I. & Shevach, E.M. Differentiated TH1 autoreactive effector cells can induce experimental autoimmune encephalomyelitis in the absence of IL-12 and CD40/CD40L interactions. J. Neuroimmunol.122, 65–73 (2002). ArticleCASPubMed Google Scholar
Hu-Li, J., Huang, H., Ryan, J. & Paul, W.E. In differentiated CD4+ T cells, interleukin 4 production is cytokine-autonomous, whereas interferon γ production is cytokine dependent. Proc. Natl. Acad. Sci. USA94, 3189–3194 (1997). ArticleCASPubMedPubMed Central Google Scholar
Rogers, P.R., Dubey, C. & Swain, S.L. Qualitative changes accompany memory T cell generation: faster, more effective responses at lower doses of antigen. J. Immunol.164, 2338–2346 (2000). ArticleCASPubMed Google Scholar
Openshaw, P. et al. Heterogeneity of intracellular cytokine synthesis at the single-cell level in polarized T helper 1 and T helper 2 populations. J. Exp. Med.182, 1357–1367 (1995). ArticleCASPubMed Google Scholar
Harbertson, J., Biederman, E., Bennett, K.E., Kondrack, R.M. & Bradley, L.M. Withdrawal of stimulation may initiate the transition of effector to memory CD4 cells. J. Immunol.168, 1095–1102 (2002). ArticleCASPubMed Google Scholar
Ahmadzadeh, M., Hussain, S.F. & Farber, D.L. Heterogeneity of the memory CD4 T cell response: persisting effectors and resting memory T cells. J. Immunol.166, 926–935 (2001). ArticleCASPubMed Google Scholar
Bucy, R.P. et al. Single cell analysis of cytokine gene coexpression during CD4+ T-cell phenotype development. Proc. Natl. Acad. Sci. USA92, 7565–7569 (1995). ArticleCASPubMedPubMed Central Google Scholar
Scheffold, A. et al. Analysis and sorting of T cells according to cytokine expression. Eur. Cytokine Netw.9, 5–11 (1998). CASPubMed Google Scholar
Iezzi, G., Scheidegger, D. & Lanzavecchia, A. Migration and function of antigen-primed nonpolarized T lymphocytes in vivo. J. Exp. Med.193, 987–993 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hu, H. et al. CD4+ T cell effectors can become memory cells with high efficiency and without further division. Nature Immunol.2, 705–710 (2001). ArticleCAS Google Scholar
Reinhardt, R.L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M.K. Visualizing the generation of memory CD4 T cells in the whole body. Nature410, 101–105 (2001). ArticleCASPubMed Google Scholar
Masopust, D., Vezys, V., Marzo, A.L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science291, 2413–2417 (2001). ArticleCASPubMed Google Scholar
Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature401, 708–712 (1999). ArticleCASPubMed Google Scholar
Szabo, S.J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell100, 655–669 (2000). ArticleCASPubMed Google Scholar
Szabo, S.J., Dighe, A.S., Gubler, U. & Murphy, K.M. Regulation of the interleukin (IL)-12Rβ2 subunit expression in developing T helper 1 (TH1) and TH2 cells. J. Exp. Med.185, 817–824 (1997). ArticleCASPubMedPubMed Central Google Scholar
Zheng, W. & Flavell, R.A. The transcription factor GATA-3 is necessary and sufficient for TH2 cytokine gene expression in CD4 T cells. Cell89, 587–596 (1997). ArticleCASPubMed Google Scholar
Dalton, D.K. et al. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science259, 1739–1742 (1993). ArticleCASPubMed Google Scholar
Zhang, X. et al. Unequal death in T helper cell (TH)1 and TH2 effectors: TH1, but not TH2, effectors undergo rapid Fas/FasL-mediated apoptosis. J. Exp. Med.185, 1837–1849 (1997). ArticleCASPubMedPubMed Central Google Scholar
Opferman, J.T., Ober, B.T. & Ashton-Rickardt, P.G. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science283, 1745–1748 (1999). ArticleCASPubMed Google Scholar
Jacob, J. & Baltimore, D. Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature399, 593–597 (1999). ArticleCASPubMed Google Scholar
Homann, D., Teyton, L. & Oldstone, M.B. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nature Med.7, 913–919 (2001). ArticleCASPubMed Google Scholar
Gett, A.V. & Hodgkin, P.D. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc. Natl. Acad. Sci. USA95, 9488–9493 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bird, J.J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity9, 229–237 (1998). ArticleCASPubMed Google Scholar
Richter, A., Lohning, M. & Radbruch, A. Instruction for cytokine expression in T helper lymphocytes in relation to proliferation and cell cycle progression. J. Exp. Med.190, 1439–1450 (1999). ArticleCASPubMedPubMed Central Google Scholar
Grogan, J.L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity14, 205–215 (2001). ArticleCASPubMed Google Scholar
Wang, X. & Mosmann, T. In vivo priming of CD4 T cells that produce interleukin (IL)-2 but not IL-4 or interferon (IFN)-γ, and can subsequently differentiate into IL-4- or IFN-γ-secreting cells. J. Exp. Med.194, 1069–1080 (2001). ArticleCASPubMedPubMed Central Google Scholar
Panus, J.F., McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Antigen-specific T helper cell function: differential cytokine expression in primary and memory responses. J. Exp. Med.192, 1301–1316 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hayashi, N., Liu, D., Min, B., Ben-Sasson, S.Z. & Paul, W.E. Antigen challenge leads to in vivo activation and elimination of highly polarized TH1 memory T cells. Proc. Natl. Acad. Sci. USA99, 6187–6191 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gurunathan, S., Prussin, C., Sacks, D.L. & Seder, R.A. Vaccine requirements for sustained cellular immunity to an intracellular parasitic infection. Nature Med.4, 1409–1415 (1998). ArticleCASPubMed Google Scholar
Hou, S., Hyland, L., Ryan, K.W., Portner, A. & Doherty, P.C. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature369, 652–654 (1994). ArticleCASPubMed Google Scholar
Huygen, K. et al. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nature Med.2, 893–898 (1996). ArticleCASPubMed Google Scholar
Rhee, E.G. et al. Vaccination with heat-killed leishmania antigen or recombinant leishmanial protein and CpG oligodeoxynucleotides induces long-term memory CD4+ and CD8+ T cell responses and protection against Leishmania major infection. J. Exp. Med.195, 1565–1573 (2002). ArticleCASPubMedPubMed Central Google Scholar
Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res.29, 45–45 (2001). Article Google Scholar