Distinct lineages of TH1 cells have differential capacities for memory cell generation in vivo (original) (raw)

References

  1. Abbas, A.K., Murphy, K.M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).
    Article CAS PubMed Google Scholar
  2. O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8, 275–283 (1998).
    Article CAS PubMed Google Scholar
  3. Murphy, K.M. et al. Signaling and transcription in T helper development. Annu. Rev. Immunol. 18, 451–494 (2000).
    Article CAS PubMed Google Scholar
  4. Mullen, A.C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).
    Article CAS PubMed Google Scholar
  5. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).
    Article CAS PubMed Google Scholar
  6. Dutton, R.W., Bradley, L.M. & Swain, S.L. T cell memory. Annu. Rev. Immunol. 16, 201–223 (1998).
    Article CAS PubMed Google Scholar
  7. Sprent, J. & Surh, C.D. T cell memory. Annu. Rev. Immunol. 20, 551–579 (2002).
    Article CAS PubMed Google Scholar
  8. Swain, S.L. Generation and in vivo persistence of polarized TH1 and TH2 memory cells. Immunity 1, 543–552 (1994).
    Article CAS PubMed Google Scholar
  9. Swain, S.L., Hu, H. & Huston, G. Class II-independent generation of CD4 memory T cells from effectors. Science 286, 1381–1383 (1999).
    Article CAS PubMed Google Scholar
  10. Trinchieri, G. Immunobiology of interleukin-12. Immunol. Res. 17, 269–278 (1998).
    Article CAS PubMed Google Scholar
  11. Stobie, L. et al. The role of antigen and IL-12 in sustaining TH1 memory cells in vivo: IL-12 is required to maintain memory/effector TH1 cells sufficient to mediate protection to an infectious parasite challenge. Proc. Natl. Acad. Sci. USA 97, 8427–8432 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  12. Park, A.Y., Hondowicz, B.D. & Scott, P. IL-12 is required to maintain a TH1 response during Leishmania major infection. J. Immunol. 165, 896–902 (2000).
    Article CAS PubMed Google Scholar
  13. Yap, G., Pesin, M. & Sher, A. IL-12 is required for the maintenance of IFN-γ production in T cells mediating chronic resistance to the intracellular pathogen, Toxoplasma gondii. J. Immunol. 165, 628–631 (2000).
    Article CAS PubMed Google Scholar
  14. Leonard, J.P., Waldburger, K.E. & Goldman, S.J. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J. Exp. Med. 181, 381–386 (1995).
    Article CAS PubMed Google Scholar
  15. Neurath, M.F., Fuss, I., Kelsall, B.L., Stuber, E. & Strober, W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J. Exp. Med. 182, 1281–1290 (1995).
    Article CAS PubMed Google Scholar
  16. Tarrant, T.K., Silver, P.B., Chan, C.C., Wiggert, B. & Caspi, R.R. Endogenous IL-12 is required for induction and expression of experimental autoimmune uveitis. J. Immunol. 161, 122–127 (1998).
    CAS PubMed Google Scholar
  17. Hong, K., Berg, E.L. & Ehrhardt, R.O. Persistence of pathogenic CD4+ TH1-like cells in vivo in the absence of IL-12 but in the presence of autoantigen. J. Immunol. 166, 4765–4772 (2001).
    Article CAS PubMed Google Scholar
  18. Mendel, I. & Shevach, E.M. Differentiated TH1 autoreactive effector cells can induce experimental autoimmune encephalomyelitis in the absence of IL-12 and CD40/CD40L interactions. J. Neuroimmunol. 122, 65–73 (2002).
    Article CAS PubMed Google Scholar
  19. Hu-Li, J., Huang, H., Ryan, J. & Paul, W.E. In differentiated CD4+ T cells, interleukin 4 production is cytokine-autonomous, whereas interferon γ production is cytokine dependent. Proc. Natl. Acad. Sci. USA 94, 3189–3194 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  20. Rogers, P.R., Dubey, C. & Swain, S.L. Qualitative changes accompany memory T cell generation: faster, more effective responses at lower doses of antigen. J. Immunol. 164, 2338–2346 (2000).
    Article CAS PubMed Google Scholar
  21. Openshaw, P. et al. Heterogeneity of intracellular cytokine synthesis at the single-cell level in polarized T helper 1 and T helper 2 populations. J. Exp. Med. 182, 1357–1367 (1995).
    Article CAS PubMed Google Scholar
  22. Harbertson, J., Biederman, E., Bennett, K.E., Kondrack, R.M. & Bradley, L.M. Withdrawal of stimulation may initiate the transition of effector to memory CD4 cells. J. Immunol. 168, 1095–1102 (2002).
    Article CAS PubMed Google Scholar
  23. Ahmadzadeh, M., Hussain, S.F. & Farber, D.L. Heterogeneity of the memory CD4 T cell response: persisting effectors and resting memory T cells. J. Immunol. 166, 926–935 (2001).
    Article CAS PubMed Google Scholar
  24. Bucy, R.P. et al. Single cell analysis of cytokine gene coexpression during CD4+ T-cell phenotype development. Proc. Natl. Acad. Sci. USA 92, 7565–7569 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  25. Scheffold, A. et al. Analysis and sorting of T cells according to cytokine expression. Eur. Cytokine Netw. 9, 5–11 (1998).
    CAS PubMed Google Scholar
  26. Iezzi, G., Scheidegger, D. & Lanzavecchia, A. Migration and function of antigen-primed nonpolarized T lymphocytes in vivo. J. Exp. Med. 193, 987–993 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  27. Hu, H. et al. CD4+ T cell effectors can become memory cells with high efficiency and without further division. Nature Immunol. 2, 705–710 (2001).
    Article CAS Google Scholar
  28. Reinhardt, R.L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M.K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).
    Article CAS PubMed Google Scholar
  29. Masopust, D., Vezys, V., Marzo, A.L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).
    Article CAS PubMed Google Scholar
  30. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).
    Article CAS PubMed Google Scholar
  31. Szabo, S.J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).
    Article CAS PubMed Google Scholar
  32. Szabo, S.J., Dighe, A.S., Gubler, U. & Murphy, K.M. Regulation of the interleukin (IL)-12Rβ2 subunit expression in developing T helper 1 (TH1) and TH2 cells. J. Exp. Med. 185, 817–824 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  33. Zheng, W. & Flavell, R.A. The transcription factor GATA-3 is necessary and sufficient for TH2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).
    Article CAS PubMed Google Scholar
  34. Dalton, D.K. et al. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science 259, 1739–1742 (1993).
    Article CAS PubMed Google Scholar
  35. Zhang, X. et al. Unequal death in T helper cell (TH)1 and TH2 effectors: TH1, but not TH2, effectors undergo rapid Fas/FasL-mediated apoptosis. J. Exp. Med. 185, 1837–1849 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  36. Opferman, J.T., Ober, B.T. & Ashton-Rickardt, P.G. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283, 1745–1748 (1999).
    Article CAS PubMed Google Scholar
  37. Jacob, J. & Baltimore, D. Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 399, 593–597 (1999).
    Article CAS PubMed Google Scholar
  38. Homann, D., Teyton, L. & Oldstone, M.B. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nature Med. 7, 913–919 (2001).
    Article CAS PubMed Google Scholar
  39. Gett, A.V. & Hodgkin, P.D. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc. Natl. Acad. Sci. USA 95, 9488–9493 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  40. Bird, J.J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).
    Article CAS PubMed Google Scholar
  41. Richter, A., Lohning, M. & Radbruch, A. Instruction for cytokine expression in T helper lymphocytes in relation to proliferation and cell cycle progression. J. Exp. Med. 190, 1439–1450 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  42. Grogan, J.L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205–215 (2001).
    Article CAS PubMed Google Scholar
  43. Wang, X. & Mosmann, T. In vivo priming of CD4 T cells that produce interleukin (IL)-2 but not IL-4 or interferon (IFN)-γ, and can subsequently differentiate into IL-4- or IFN-γ-secreting cells. J. Exp. Med. 194, 1069–1080 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  44. Panus, J.F., McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Antigen-specific T helper cell function: differential cytokine expression in primary and memory responses. J. Exp. Med. 192, 1301–1316 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  45. Hayashi, N., Liu, D., Min, B., Ben-Sasson, S.Z. & Paul, W.E. Antigen challenge leads to in vivo activation and elimination of highly polarized TH1 memory T cells. Proc. Natl. Acad. Sci. USA 99, 6187–6191 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  46. Gurunathan, S., Prussin, C., Sacks, D.L. & Seder, R.A. Vaccine requirements for sustained cellular immunity to an intracellular parasitic infection. Nature Med. 4, 1409–1415 (1998).
    Article CAS PubMed Google Scholar
  47. Hou, S., Hyland, L., Ryan, K.W., Portner, A. & Doherty, P.C. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369, 652–654 (1994).
    Article CAS PubMed Google Scholar
  48. Huygen, K. et al. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nature Med. 2, 893–898 (1996).
    Article CAS PubMed Google Scholar
  49. Rhee, E.G. et al. Vaccination with heat-killed leishmania antigen or recombinant leishmanial protein and CpG oligodeoxynucleotides induces long-term memory CD4+ and CD8+ T cell responses and protection against Leishmania major infection. J. Exp. Med. 195, 1565–1573 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  50. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 45–45 (2001).
    Article Google Scholar

Download references