Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon (original) (raw)
Rodriguez, A., Regnault, A., Kleijmeer, M., Ricciardi-Castagnoli, P. & Amigorena, S. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat. Cell. Biol.1, 362–368 (1999). ArticleCAS Google Scholar
Heath, W.R. & Carbone, F.R. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol.19, 47–64 (2001). ArticleCAS Google Scholar
Kurts, C., Cannarile, M., Klebba, I. & Brocker, T. Dendritic cells are sufficient to cross-present self-antigens to CD8 T cells in vivo. J. Immunol.166, 1439–1442 (2001). ArticleCAS Google Scholar
Belz, G.T. et al. The CD8a+ dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J. Exp. Med.196, 1099–1104 (2002). ArticleCAS Google Scholar
Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8 T cells by exogenous cell-associated antigens. Immunity17, 211–220 (2002). ArticleCAS Google Scholar
Bevan, M.J. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J. Exp. Med.143, 1283–1288 (1976). ArticleCAS Google Scholar
Gordon, R.D., Mathieson, B.J., Samelson, L.E., Boyse, E.A. & Simpson, E. The effect of allogeneic presensitization on H-Y graft survival and in vitro cell-mediated responses to H-Y antigen. J. Exp. Med.144, 810–820 (1976). ArticleCAS Google Scholar
Gooding, L.R. & Edwards, C.B. H-2 antigen requirements in the in vitro induction of SV40-specific cytotoxic lymphocytes. J. Immunol.124, 1258–1262 (1980). CASPubMed Google Scholar
Carbone, F.R. & Bevan, M.J. Class I-restricted processing and presentation of exogenous cell-associated antigen in vivo. J. Exp. Med.171, 377–387 (1990). ArticleCAS Google Scholar
Kurts, C., Kosaka, H., Carbone, F.R., Miller, J.F.A.P. & Heath, W.R. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med.186, 239–245 (1997). ArticleCAS Google Scholar
Bennett, S.R.M., Carbone, F.R., Karamalis, F., Miller, J.F.A.P. & Heath, W.R. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J. Exp. Med.186, 65–70 (1997). ArticleCAS Google Scholar
Bennet, S.R.M. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature393, 478–480 (1998). Article Google Scholar
Schoenberger, S.P., Toes, R.E.M., van der Voort, E.I.H., Offringa, R. & Melief, C.J.M. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature393, 480–483 (1998). ArticleCAS Google Scholar
Ridge, J.P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature393, 474–478 (1998). ArticleCAS Google Scholar
Liu, K. et al. Immune tolerance after delivery of dying cells to dendritic cells in situ. J. Exp. Med.196, 1091–1097 (2002). ArticleCAS Google Scholar
Mazzaccaro, R.J. et al. Major histocompatibility class I presentation of soluble antigen facilitated by Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. USA93, 11786–11791 (1996). ArticleCAS Google Scholar
Simmons, C.P. et al. MHC class I-restricted cytotoxic lymphocyte responses induced by enterotoxin-based mucosal adjuvants. J. Immunol.163, 6502–6510 (1999). CASPubMed Google Scholar
Cho, H.J. et al. Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat. Biotechnol.18, 509–514 (2000). ArticleCAS Google Scholar
Hamilton, S.E., Tvinnereim, A.R. & Harty, J.T. Listeria monocytogenes infection overcomes the requirement for CD40 ligand in exogenous antigen presentation to CD8+ T cells. J. Immunol.167, 5603–5609 (2001). ArticleCAS Google Scholar
Sigal, L.J., Crotty, S., Andino, R. & Rock, K.L. Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature398, 77–80. (1999). ArticleCAS Google Scholar
Mueller, S.N., Jones, C.M., Smith, C.M., Heath, W.R. & Carbone, F.R. Rapid cytotoxic T lymphocyte activation occurs in the draining lymph nodes after cutaneous herpes simplex virus infection as a result of early antigen presentation and not the presence of virus. J. Exp. Med.195, 651–656 (2002). ArticleCAS Google Scholar
Goodbourn, S., Didcock, L. & Randall, R.E. Interferons: cell signalling, immune modulation, antiviral responses and virus countermeasures. J. Gen. Virol.81, 2341–2364 (2000). ArticleCAS Google Scholar
Siegal, F.P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science284, 1835–1837 (1999). ArticleCAS Google Scholar
Luft, T. et al. Type I IFNs enhance the terminal differentiation of dendritic cells. J. Immunol.161, 1947–1953 (1998). CASPubMed Google Scholar
Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: Endogenous activators of dendritic cells. Nat. Med.5, 1249–1255 (1999). ArticleCAS Google Scholar
Ito, T. et al. Differential regulation of human blood dendritic cell subsets by IFNs. J. Immunol.166, 2961–2969 (2001). ArticleCAS Google Scholar
Le Bon, A. et al. Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity14, 461–470 (2001). ArticleCAS Google Scholar
Montoya, M. et al. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood99, 3263–3271 (2002). ArticleCAS Google Scholar
von Hoegen, P., Zawatzky, R. & Schirrmacher, V. Modification of tumor cells by a low dose of Newcastle disease virus. III. Potentiation of tumor-specific cytolytic T cell activity via induction of interferon-α/β. Cell. Immunol.126, 80–90. (1990). ArticleCAS Google Scholar
Ferrantini, M. et al. IFN-α1 gene expression into a metastatic murine adenocarcinoma (TS/A) results in CD8+ T cell mediated tumor rejection and development of antitumor immunity. Comparative studies with IFN-γ-producing TS/A cells. J. Immunol.153, 4604–4615 (1994). CASPubMed Google Scholar
Tough, D.F., Borrow, P. & Sprent, J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science272, 1947–1950 (1996). ArticleCAS Google Scholar
Van Uden, J.H., Tran, C.H., Carson, D.A. & Raz, E. Type I interferon is required to mount an adaptive response to immunostimulatory DNA. Eur. J. Immunol.31, 3281–3290 (2001). ArticleCAS Google Scholar
Cho, H.J. et al. IFN-αβ promote priming of antigen-specific CD8+ and CD4+ T lymphocytes by immunostimulatory DNA-based vaccines. J. Immunol.168, 4907–4913 (2002). ArticleCAS Google Scholar
Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell76, 17–27 (1994). ArticleCAS Google Scholar
Merigan, T.C., Oldstone, M.B. & Welsh, R.M. Interferon production during lymphocytic choriomeningitis virus infection of nude and normal mice. Nature268, 67–68 (1977). ArticleCAS Google Scholar
Korngold, R., Blank, K.J. & Murasko, D.M. Effect of interferon on thoracic duct lymphocyte output: Induction with either poly I:poly C or vaccinia virus. J. Immunol.130, 2236–2240 (1983). CASPubMed Google Scholar
Moore, M.W., Carbone, F.R. & Bevan, M.J. Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell54, 777–785 (1988). ArticleCAS Google Scholar
Lefrancois, L., Altman, J.D., Williams, K. & Olson, S. Soluble antigen and CD40 triggering are sufficient to induce primary and memory cytotoxic T cells. J. Immunol.164, 725–732 (2000). ArticleCAS Google Scholar
Lu, Z. et al. CD40-independent pathways of T cell help for priming of CD8+ cytotoxic T lymphocytes. J. Exp. Med.191, 541–550 (2000). ArticleCAS Google Scholar
Zhan, Y., Corbett, A.J., Brady, J.L., Sutherland, R.M. & Lew, A.M. CD4 help-independent induction of cytotoxic CD8 cells to allogeneic P815 tumor cells is absolutely dependent on costimulation. J. Immunol.165, 3612–3619 (2000). ArticleCAS Google Scholar
Bourgeois, C., Rocha, B. & Tanchot, C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science297, 2060–2063 (2002). ArticleCAS Google Scholar
Janssen, E.M. et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature421, 852–856 (2003). ArticleCAS Google Scholar
Sun, J.C. & Bevan, M.J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science300, 339–342 (2003). ArticleCAS Google Scholar
Shedlock, D.J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science300, 337–339 (2003). ArticleCAS Google Scholar
Josien, R. et al. TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J. Exp. Med.191, 495–502 (2000). ArticleCAS Google Scholar
Jamaluddin, M. et al. IFN-β mediates coordinate expression of antigen-processing genes in RSV-infected pulmonary epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol.280, L248–L257 (2001). ArticleCAS Google Scholar
Dutko, F.J. & Oldstone, M.B. Genomic and biological variation among commonly used lymphocytic choriomeningitis virus strains. J. Gen. Virol.64, 1689–1698 (1983). ArticleCAS Google Scholar
Chakrabarti, S., Brechling, K. & Moss, B. Vaccinia virus expression vector: coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Mol. Cell. Biol.5, 3403–3409 (1985). ArticleCAS Google Scholar
Restifo, N.P. et al. Antigen processing in vivo and the elicitation of primary CTL responses. J. Immunol.154, 4414–4422 (1995). CASPubMedPubMed Central Google Scholar