Transcriptional regulation of endochondral ossification by HIF-2α during skeletal growth and osteoarthritis development (original) (raw)
Kronenberg, H.M. Developmental regulation of the growth plate. Nature423, 332–336 (2003). ArticleCAS Google Scholar
Kühn, K., D'Lima, D.D., Hashimoto, S. & Lotz, M. Cell death in cartilage. Osteoarthritis Cartilage12, 1–16 (2004). Article Google Scholar
Kawaguchi, H. Endochondral ossification signals in cartilage degradation during osteoarthritis progression in experimental mouse models. Mol. Cells25, 1–6 (2008). CASPubMed Google Scholar
Kamekura, S. et al. Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthritis Cartilage13, 632–641 (2005). ArticleCAS Google Scholar
Kamekura, S. et al. Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Arthritis Rheum.54, 2462–2470 (2006). ArticleCAS Google Scholar
Yamada, T. et al. Carminerin contributes to chondrocyte calcification during endochondral ossification. Nat. Med.12, 665–670 (2006). ArticleCAS Google Scholar
Drissi, H., Zuscik, M., Rosier, R. & O'Keefe, R. Transcriptional regulation of chondrocyte maturation: potential involvement of transcription factors in OA pathogenesis. Mol. Aspects Med.26, 169–179 (2005). ArticleCAS Google Scholar
Ortega, N., Behonick, D.J. & Werb, Z. Matrix remodeling during endochondral ossification. Trends Cell Biol.14, 86–93 (2004). ArticleCAS Google Scholar
Stickens, D. et al. Altered endochondral bone development in matrix metalloproteinase 13–deficient mice. Development131, 5883–5895 (2004). ArticleCAS Google Scholar
Zelzer, E. et al. VEGFA is necessary for chondrocyte survival during bone development. Development131, 2161–2171 (2004). ArticleCAS Google Scholar
Semenza, G.L. HIF-1 and human disease: one highly involved factor. Genes Dev.14, 1983–1991 (2000). CASPubMed Google Scholar
Schofield, C.J. & Ratcliffe, P.J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol.5, 343–354 (2004). ArticleCAS Google Scholar
Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J. & Whitelaw, M.L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science295, 858–861 (2002). ArticleCAS Google Scholar
Pfander, D., Cramer, T., Schipani, E. & Johnson, R.S. HIF-1α controls extracellular matrix synthesis by epiphyseal chondrocytes. J. Cell Sci.116, 1819–1826 (2003). ArticleCAS Google Scholar
Schipani, E. Hypoxia and HIF-1α in chondrogenesis. Ann. NY Acad. Sci.1068, 66–73 (2006). ArticleCAS Google Scholar
Schipani, E. et al. Hypoxia in cartilage: HIF-1α is essential for chondrocyte growth arrest and survival. Genes Dev.15, 2865–2876 (2001). CASPubMedPubMed Central Google Scholar
Patel, S.A. & Simon, M.C. Biology of hypoxia-inducible factor-2α in development and disease. Cell Death Differ.15, 628–634 (2008). ArticleCAS Google Scholar
O'Rourke, J.F., Tian, Y.M., Ratcliffe, P.J. & Pugh, C.W. Oxygen-regulated and transactivating domains in endothelial PAS protein 1: comparison with hypoxia-inducible factor-1α. J. Biol. Chem.274, 2060–2071 (1999). ArticleCAS Google Scholar
Jain, S., Maltepe, E., Lu, M.M., Simon, C. & Bradfield, C.A. Expression of ARNT, ARNT2, HIF1 α, HIF2 α and Ah receptor mRNAs in the developing mouse. Mech. Dev.73, 117–123 (1998). ArticleCAS Google Scholar
Tian, H., Hammer, R.E., Matsumoto, A.M., Russell, D.W. & McKnight, S.L. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev.12, 3320–3324 (1998). ArticleCAS Google Scholar
Scortegagna, M. et al. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in _Epas1_−/− mice. Nat. Genet.35, 331–340 (2003). ArticleCAS Google Scholar
Komori, T. Regulation of skeletal development by the Runx family of transcription factors. J. Cell. Biochem.95, 445–453 (2005). ArticleCAS Google Scholar
Arnold, M.A. et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev. Cell12, 377–389 (2007). ArticleCAS Google Scholar
Magee, C., Nurminskaya, M., Faverman, L., Galera, P. & Linsenmayer, T.F. SP3/SP1 transcription activity regulates specific expression of collagen type X in hypertrophic chondrocytes. J. Biol. Chem.280, 25331–25338 (2005). ArticleCAS Google Scholar
Pescador, N. et al. Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene. Biochem. J.390, 189–197 (2005). ArticleCAS Google Scholar
Pritzker, K.P. et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage14, 13–29 (2006). ArticleCAS Google Scholar
Muraki, S. et al. Prevalence of radiographic knee osteoarthritis and its association with knee pain in the elderly of Japanese population–based cohorts: the ROAD study. Osteoarthritis Cartilage17, 1137–1143 (2009). ArticleCAS Google Scholar
Li, Q. & Verma, I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol.2, 725–734 (2002). ArticleCAS Google Scholar
Stewart, A.J., Houston, B. & Farquharson, C. Elevated expression of hypoxia inducible factor-2α in terminally differentiating growth plate chondrocytes. J. Cell. Physiol.206, 435–440 (2006). ArticleCAS Google Scholar
Amarilio, R. et al. HIF1α regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development134, 3917–3928 (2007). ArticleCAS Google Scholar
Bohensky, J. et al. Regulation of autophagy in human and murine cartilage: hypoxia-inducible factor 2 suppresses chondrocyte autophagy. Arthritis Rheum.60, 1406–1415 (2009). Article Google Scholar
Gress, C.J. & Jacenko, O. Growth plate compressions and altered hematopoiesis in collagen X null mice. J. Cell Biol.149, 983–993 (2000). ArticleCAS Google Scholar
Kwan, K.M. et al. Abnormal compartmentalization of cartilage matrix components in mice lacking collagen X: implications for function. J. Cell Biol.136, 459–471 (1997). ArticleCAS Google Scholar
Rosati, R. et al. Normal long bone growth and development in type X collagen–null mice. Nat. Genet.8, 129–135 (1994). ArticleCAS Google Scholar
Tamiya, H. et al. Analysis of the Runx2 promoter in osseous and non-osseous cells and identification of HIF2A as a potent transcription activator. Gene416, 53–60 (2008). ArticleCAS Google Scholar
Echtermeyer, F. et al. Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat. Med.15, 1072–1076 (2009). ArticleCAS Google Scholar
Glasson, S.S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature434, 644–648 (2005). ArticleCAS Google Scholar
Lin, A.C. et al. Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat. Med.15, 1421–1425 (2009). ArticleCAS Google Scholar
Stanton, H. et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature434, 648–652 (2005). ArticleCAS Google Scholar
Little, C.B. et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum.60, 3723–3733 (2009). ArticleCAS Google Scholar
Iliopoulos, D., Malizos, K.N., Oikonomou, P. & Tsezou, A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One3, e3740 (2008). Article Google Scholar
Saito, T., Ikeda, T., Nakamura, K., Chung, U.I. & Kawaguchi, H. S100A1 and S100B, transcriptional targets of SOX trio, inhibit terminal differentiation of chondrocytes. EMBO Rep.8, 504–509 (2007). ArticleCAS Google Scholar
Maemura, K. et al. Generation of a dominant-negative mutant of endothelial PAS domain protein 1 by deletion of a potent C-terminal transactivation domain. J. Biol. Chem.274, 31565–31570 (1999). ArticleCAS Google Scholar
Ueta, C. et al. Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J. Cell Biol.153, 87–100 (2001). ArticleCAS Google Scholar
Miyagishi, M. & Taira, K. RNAi expression vectors in mammalian cells. Methods Mol. Biol.252, 483–491 (2004). CASPubMed Google Scholar
Kitamura, T. New experimental approaches in retrovirus-mediated expression screening. Int. J. Hematol.67, 351–359 (1998). ArticleCAS Google Scholar
Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther.7, 1063–1066 (2000). ArticleCAS Google Scholar
Parfitt, A.M. et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res.2, 595–610 (1987). ArticleCAS Google Scholar
Mankin, H.J., Dorfman, H., Lippiello, L. & Zarins, A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J. Bone Joint Surg. Am.53, 523–537 (1971). ArticleCAS Google Scholar
Ostergaard, K., Andersen, C.B., Petersen, J., Bendtzen, K. & Salter, D.M. Validity of histopathological grading of articular cartilage from osteoarthritic knee joints. Ann. Rheum. Dis.58, 208–213 (1999). ArticleCAS Google Scholar
Kellgren, J.H. & Lawrence, J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis.16, 494–502 (1957). ArticleCAS Google Scholar
Hirata, M. et al. C/EBPβ promotes transition from proliferation to hypertrophic differentiation of chondrocytes through transactivation of p57. PLoS One4, e4543 (2009). Article Google Scholar