KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis (original) (raw)
Saffitz, J.E. & Schwartz, C.J. Coronary atherosclerosis and thrombosis underlying acute myocardial infarction. Cardiol. Clin.5, 21–30 (1987). ArticleCASPubMed Google Scholar
Libby, P. & Aikawa, M. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat. Med.8, 1257–1262 (2002). ArticleCASPubMed Google Scholar
Falk, E., Nakano, M., Benton, J.F., Finn, A.V. & Virmani, R. Update on acute coronary syndromes: the pathologists′ view. Eur. Heart J.34, 719–728 (20123). ArticlePubMedCAS Google Scholar
Falk, E., Shah, P.K. & Fuster, V. Coronary plaque disruption. Circulation92, 657–671 (1995). ArticleCASPubMed Google Scholar
Virmani, R., Kolodgie, F.D., Burke, A.P., Farb, A. & Schwartz, S.M. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol.20, 1262–1275 (2000). ArticleCASPubMed Google Scholar
Lee, R.T. & Libby, P. The unstable atheroma. Arterioscler. Thromb. Vasc. Biol.17, 1859–1867 (1997). ArticleCASPubMed Google Scholar
Libby, P., Ridker, P.M. & Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature473, 317–325 (2011). ArticleCASPubMed Google Scholar
Rong, J.X., Shapiro, M., Trogan, E. & Fisher, E.A. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc. Natl. Acad. Sci. USA100, 13531–13536 (2003). ArticleCASPubMedPubMed Central Google Scholar
Martin, K. et al. Thrombin stimulates smooth muscle cell differentiation from peripheral blood mononuclear cells via protease-activated receptor-1, RhoA, and myocardin. Circ. Res.105, 214–218 (2009). ArticleCASPubMed Google Scholar
Caplice, N.M. et al. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc. Natl. Acad. Sci. USA100, 4754–4759 (2003). ArticleCASPubMedPubMed Central Google Scholar
Iwata, H. et al. Bone marrow-derived cells contribute to vascular inflammation but do not differentiate into smooth muscle cell lineages. Circulation122, 2048–2057 (2010). ArticleCASPubMed Google Scholar
Wamhoff, B.R. et al. A G/C element mediates repression of the SM22α promoter within phenotypically modulated smooth muscle cells in experimental atherosclerosis. Circ. Res.95, 981–988 (2004). ArticleCASPubMed Google Scholar
Feil, S. et al. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ. Res.115, 662–667 (2014). ArticleCASPubMed Google Scholar
Swirski, F.K. & Nahrendorf, M. Do vascular smooth muscle cells differentiate to macrophages in atherosclerotic lesions? Circ. Res.115, 605–606 (2014). ArticleCASPubMedPubMed Central Google Scholar
Allahverdian, S., Chehroudi, A.C., McManus, B.M., Abraham, T. & Francis, G.A. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation129, 1551–1559 (2014). ArticleCASPubMed Google Scholar
Yoshida, T., Kaestner, K.H. & Owens, G.K. Conditional deletion of Krüppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ. Res.102, 1548–1557 (2008). ArticleCASPubMedPubMed Central Google Scholar
Deaton, R.A., Gan, Q. & Owens, G.K. Sp1-dependent activation of KLF4 is required for PDGF-BB–induced phenotypic modulation of smooth muscle. Am. J. Physiol. Heart Circ. Physiol.296, H1027–H1037 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yoshida, T., Gan, Q. & Owens, G.K. Kruppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. Am. J. Physiol. Cell Physiol.295, C1175–C1182 (2008). ArticleCASPubMedPubMed Central Google Scholar
Thomas, J.A. et al. PDGF-DD, a novel mediator of smooth muscle cell phenotypic modulation, is upregulated in endothelial cells exposed to atherosclerosis-prone flow patterns. Am. J. Physiol. Heart Circ. Physiol.296, H442–H452 (2009). ArticleCASPubMed Google Scholar
Pidkovka, N.A. et al. Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circ. Res.101, 792–801 (2007). ArticleCASPubMed Google Scholar
Alexander, M.R. & Owens, G.K. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu. Rev. Physiol.74, 13–40 (2012). ArticleCASPubMed Google Scholar
Gomez, D., Shankman, L.S., Nguyen, A.T. & Owens, G.K. Detection of histone modifications at specific gene loci in single cells in histological sections. Nat. Methods10, 171–177 (2013). ArticleCASPubMedPubMed Central Google Scholar
Klein, D., Benchellal, M., Kleff, V., Jakob, H.G. & Ergun, S. Hox genes are involved in vascular wall-resident multipotent stem cell differentiation into smooth muscle cells. Sci. Rep.3, 2178 (2013). ArticlePubMedPubMed Central Google Scholar
Klein, D. et al. Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS ONE6, e20540 (2011). ArticleCASPubMedPubMed Central Google Scholar
Xiao, Q. et al. Sca-1+ progenitors derived from embryonic stem cells differentiate into endothelial cells capable of vascular repair after arterial injury. Arterioscler. Thromb. Vasc. Biol.26, 2244–2251 (2006). ArticleCASPubMed Google Scholar
Xiao, Q., Zeng, L., Zhang, Z., Hu, Y. & Xu, Q. Stem cell-derived Sca-1+ progenitors differentiate into smooth muscle cells, which is mediated by collagen IV-integrin α1/β1/αv and PDGF receptor pathways. Am. J. Physiol. Cell Physiol.292, C342–C352 (2007). ArticleCASPubMed Google Scholar
Passman, J.N. et al. A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc. Natl. Acad. Sci. USA105, 9349–9354 (2008). ArticleCASPubMedPubMed Central Google Scholar
McDonald, O.G., Wamhoff, B.R., Hoofnagle, M.H. & Owens, G.K. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J. Clin. Invest.116, 36–48 (2006). ArticleCASPubMedPubMed Central Google Scholar
Vladykovskaya, E. et al. Reductive metabolism increases the proinflammatory activity of aldehyde phospholipids. J. Lipid Res.52, 2209–2225 (2011). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007). ArticleCASPubMed Google Scholar
Cherepanova, O.A. et al. Oxidized phospholipids induce type VIII collagen expression and vascular smooth muscle cell migration. Circ. Res.104, 609–618 (2009). ArticleCASPubMedPubMed Central Google Scholar
Salmon, M., Gomez, D., Greene, E., Shankman, L. & Owens, G.K. Cooperative binding of KLF4, pELK-1, and HDAC2 to a G/C repressor element in the SM22α promoter mediates transcriptional silencing during SMC phenotypic switching in vivo. Circ. Res.111, 685–696 (2012). ArticleCASPubMedPubMed Central Google Scholar
Regan, C.P., Adam, P.J., Madsen, C.S. & Owens, G.K. Molecular mechanisms of decreased smooth muscle differentiation marker expression after vascular injury. J. Clin. Invest.106, 1139–1147 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sharma, N. et al. Myeloid Krüppel-like factor 4 deficiency augments atherogenesis in _Apoe_−/− mice–brief report. Arterioscler. Thromb. Vasc. Biol.32, 2836–2838 (2012). ArticleCASPubMedPubMed Central Google Scholar
Nguyen, A.T. et al. Smooth muscle cell plasticity: fact or fiction? Circ. Res.112, 17–22 (2013). ArticleCASPubMed Google Scholar
Tang, Z. et al. Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nat. Commun.3, 875 (2012). ArticlePubMedCAS Google Scholar
Foster, K.W. et al. Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene24, 1491–1500 (2005). ArticleCASPubMedPubMed Central Google Scholar
Jaubert, J., Cheng, J. & Segre, J.A. Ectopic expression of Krüppel-like factor 4 (Klf4) accelerates formation of the epidermal permeability barrier. Development130, 2767–2777 (2003). ArticleCASPubMed Google Scholar
Katz, J.P. et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development129, 2619–2628 (2002). ArticleCASPubMed Google Scholar
Katz, J.P. et al. Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach. Gastroenterology128, 935–945 (2005). ArticleCASPubMed Google Scholar
Dandré, F. & Owens, G.K. Platelet-derived growth factor-BB and Ets-1 transcription factor negatively regulate transcription of multiple smooth muscle cell differentiation marker genes. Am. J. Physiol. Heart Circ. Physiol.286, H2042–H2051 (2004). ArticlePubMed Google Scholar
Clément, N. et al. Notch3 and IL-1β exert opposing effects on a vascular smooth muscle cell inflammatory pathway in which NF-κB drives crosstalk. J. Cell Sci.120, 3352–3361 (2007). ArticlePubMedCAS Google Scholar
Vengrenyuk, Y. et al. Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler. Thromb. Vasc. Biol.35, 535–546 (2015). ArticleCASPubMedPubMed Central Google Scholar
Owens, G.K. Regulation of differentiation of vascular smooth muscle cells. Physiol. Rev.75, 487–517 (1995). ArticleCASPubMed Google Scholar
Owens, G.K., Kumar, M.S. & Wamhoff, B.R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev.84, 767–801 (2004). ArticleCASPubMed Google Scholar
Wirth, A. et al. G12–G13-LARG–mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat. Med.14, 64–68 (2008). ArticleCASPubMed Google Scholar
Vooijs, M., Jonkers, J. & Berns, A. A highly efficient ligand-regulated Cre recombinase mouse line shows that loxP recombination is position dependent. EMBO Rep.2, 292–297 (2001). ArticleCASPubMedPubMed Central Google Scholar
Alexander, M.R. et al. Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. J. Clin. Invest.122, 70–79 (2012). ArticleCASPubMed Google Scholar
McDonald, O.G. & Owens, G.K. Programming smooth muscle plasticity with chromatin dynamics. Circ. Res.100, 1428–1441 (2007). ArticleCASPubMed Google Scholar
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol.10, R25 (2009). ArticlePubMedPubMed CentralCAS Google Scholar