Pathophysiologically based treatment interventions in schizophrenia (original) (raw)
Hyman, S.E. & Fenton, W.S. Medicine. What are the right targets for psychopharmacology? Science299, 350–351 (2003). ArticleCASPubMed Google Scholar
Lieberman, J.A. et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N. Engl. J. Med.353, 1209–1223 (2005). ArticleCASPubMed Google Scholar
Insel, T.R. & Scolnick, E.M. Cure therapeutics and strategic prevention: raising the bar for mental health research. Mol. Psychiatry11, 11–17 (2006). ArticleCASPubMedPubMed Central Google Scholar
Harrison, P.J. & Weinberger, D.R. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry10, 40–68 (2005). ArticleCASPubMed Google Scholar
Lewis, D.A. & Levitt, P. Schizophrenia as a disorder of neurodevelopment. Annu. Rev. Neurosci.25, 409–432 (2002). ArticleCASPubMed Google Scholar
Lewis, D.A., Hashimoto, T. & Volk, D.W. Cortical inhibitory neurons and schizophrenia. Nat. Rev. Neurosci.6, 312–324 (2005). ArticleCASPubMed Google Scholar
Mirnics, K., Levitt, P. & Lewis, D.A. Critical appraisal of DNA microarrays in psychiatric genomics. Biol. Psychiatry60, 163–176 (2006). ArticleCASPubMed Google Scholar
Lewis, D.A. The human brain revisited: Opportunities and challenges in postmortem studies of psychiatric disorders. Neuropsychopharmacology26, 143–154 (2002). ArticlePubMed Google Scholar
Elvevag, B. & Goldberg, T.E. Cognitive impairment in schizophrenia is the core of the disorder. Crit. Rev. Neurobiol.14, 1–21 (2000). ArticleCASPubMed Google Scholar
Gold, J.M. Cognitive deficits as treatment targets in schizophrenia. Schizophr. Res.72, 21–28 (2004). ArticlePubMed Google Scholar
Keefe, R.S., Eesley, C.E. & Poe, M.P. Defining a cognitive function decrement in schizophrenia. Biol. Psychiatry57, 688–691 (2005). ArticlePubMed Google Scholar
Green, M.F. What are the functional consequences of neurocognitive deficits in schizophrenia? Am. J. Psychiatry153, 321–330 (1996). ArticleCASPubMed Google Scholar
Barch, D.M. What can research on schizophrenia tell us about the cognitive neuroscience of working memory? Neuroscience139, 73–84 (2006). ArticleCASPubMed Google Scholar
Tan, H.Y., Choo, W.C., Fones, C.S. & Chee, M.W. fMRI study of maintenance and manipulation processes within working memory in first-episode schizophrenia. Am. J. Psychiatry162, 1849–1858 (2005). ArticlePubMed Google Scholar
Cannon, T.D. et al. Dorsolateral prefrontal cortex activity during maintenance and manipulation of information in working memory in patients with schizophrenia. Arch. Gen. Psychiatry62, 1071–1080 (2005). ArticlePubMed Google Scholar
Callicott, J.H. et al. Complexity of prefrontal cortical dysfunction in schizophrenia: More than up or down. Am. J. Psychiatry160, 2209–2215 (2003). ArticlePubMed Google Scholar
MacDonald, A.W., III et al. Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis. Am. J. Psychiatry162, 475–484 (2005). ArticlePubMed Google Scholar
Barch, D.M., Sheline, Y.I., Csernansky, J.G. & Snyder, A.Z. Working memory and prefrontal cortex dysfunction: Specificity to schizophrenia compared with major depression. Biol. Psychiatry53, 376–384 (2003). ArticlePubMed Google Scholar
Olney, J.W. & Farber, N.B. Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psychiatry52, 998–1007 (1995). ArticleCASPubMed Google Scholar
Moghaddam, B. Bringing order to the glutamate chaos in schizophrenia. Neuron40, 881–884 (2003). ArticleCASPubMed Google Scholar
Coyle, J.T. The GABA-glutamate connection in schizophrenia: which is the proximate cause? Biochem. Pharmacol.68, 1507–1514 (2004). ArticleCASPubMed Google Scholar
Krystal, J.H. et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry51, 199–214 (1994). ArticleCASPubMed Google Scholar
Adler, C.M. et al. Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia. Am. J. Psychiatry156, 1646–1649 (1999). ArticleCASPubMed Google Scholar
Verma, A. & Moghaddam, B. NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. J. Neurosci.16, 373–379 (1996). ArticleCASPubMed Google Scholar
Dudkin, K.N., Kruchinin, V.K. & Chueva, I.V. Neurophysiological correlates of delayed visual differentiation tasks in monkeys: the effects of the site of intracortical blockade of NMDA receptors. Neurosci. Behav. Physiol.31, 207–218 (2001). ArticleCASPubMed Google Scholar
Wang, X.J. Toward a prefrontal microcircuit model for cognitive deficits in schizophrenia. Pharmacopsychiatry39 Suppl 1, S80–S87 (2006). ArticlePubMed Google Scholar
Durstewitz, D. & Seamans, J.K. Beyond bistability: biophysics and temporal dynamics of working memory. Neuroscience139, 119–133 (2006). ArticleCASPubMed Google Scholar
Scherzer, C.R. et al. Expression of N-methyl-D-aspartate receptor subunit mRNAs in the human brain: hippocampus and cortex. J. Comp. Neurol.390, 75–90 (1998). ArticleCASPubMed Google Scholar
Konradi, C. & Heckers, S. Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol. Ther.97, 153–179 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kristiansen, L.V., Beneyto, M., Haroutunian, V. & Meador-Woodruff, J.H. Changes in NMDA receptor subunits and interacting PSD proteins in dorsolateral prefrontal and anterior cingulate cortex indicate abnormal regional expression in schizophrenia. Mol. Psychiatry11, 737–747 (2006). ArticleCASPubMed Google Scholar
Akbarian, S. et al. Selective alterations in gene expression of NMDA receptor subunits in prefrontal cortex of schizophrenics. J. Neurosci.16, 19–30 (1996). ArticleCASPubMed Google Scholar
Dracheva, S. et al. N-methyl-D-aspartic acid receptor expression in the dorsolateral prefrontal cortex of elderly patients with schizophrenia. Am. J. Psychiatry158, 1400–1410 (2001). ArticleCASPubMed Google Scholar
Mirnics, K., Middleton, F.A., Marquez, A., Lewis, D.A. & Levitt, P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron28, 53–67 (2000). ArticleCASPubMed Google Scholar
Tsai, G. et al. Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch. Gen. Psychiatry52, 829–836 (1995). ArticleCASPubMed Google Scholar
Hakak, Y. et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc. Natl. Acad. Sci. USA98, 4746–4751 (2001). ArticleCASPubMed Google Scholar
Munafo, M.R., Thiselton, D.L., Clark, T.G. & Flint, J. Association of the NRG1 gene and schizophrenia: a meta-analysis. Mol. Psychiatry11, 539–546 (2006). ArticleCASPubMed Google Scholar
Tosato, S., Dazzan, P. & Collier, D. Association between the neuregulin 1 gene and schizophrenia: a systematic review. Schizophr. Bull.31, 613–617 (2005). ArticlePubMed Google Scholar
Hahn, C.G. et al. Altered neuregulin 1-erbB4 signaling contributes to NMDA> receptor hypofunction in schizophrenia. Nat Med.12, 824–828 (2006). ArticleCASPubMed Google Scholar
Law, A.J. et al. Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5′ SNPs associated with the disease. Proc. Natl. Acad. Sci. USA103, 6747–6752 (2006). ArticleCASPubMed Google Scholar
Carlsson, A. The neurochemical circuitry of schizophrenia. Pharmacopsychiatry39 Suppl 1, S10–S14 (2006). ArticleCASPubMed Google Scholar
Weinberger, D.R. Implications of normal brain development for the pathogenesis of schizophrenia. Arch. Gen. Psychiatry44, 660–669 (1987). ArticleCASPubMed Google Scholar
Davis, K.L., Kahn, R.S., Ko, G. & Davidson, M. Dopamine in schizophrenia: A review and reconceptualization. Am. J. Psychiatry148, 1474–1486 (1991). ArticleCASPubMed Google Scholar
Brozoski, T.J., Brown, R.M., Rosvold, H.E. & Goldman, P.S. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkeys. Science205, 929–932 (1979). ArticleCASPubMed Google Scholar
Sawaguchi, T. & Goldman-Rakic, P.S. D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science251, 947–950 (1991). ArticleCASPubMed Google Scholar
Sawaguchi, T. & Goldman-Rakic, P.S. The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J. Neurophysiol.71, 515–528 (1994). ArticleCASPubMed Google Scholar
Goldman-Rakic, P.S., Lidow, M.S. & Gallagher, D.W. Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J. Neurosci.10, 2125–2138 (1990). ArticleCASPubMed Google Scholar
González-Burgos, G. et al. Dopamine modulation of neuronal function in the monkey prefrontal cortex. Physiol. Behav.77, 537–543 (2002). ArticlePubMed Google Scholar
Williams, G.V. & Goldman-Rakic, P.S. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature376, 572–575 (1995). ArticleCASPubMed Google Scholar
Sawaguchi, T. The effects of dopamine and its antagonists on directional delay-period activity of prefrontal neurons in monkeys during an oculomotor delayed-response task. Neurosci. Res.41, 115–128 (2001). ArticleCASPubMed Google Scholar
Akil, M. et al. Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am. J. Psychiatry156, 1580–1589 (1999). ArticleCASPubMed Google Scholar
Abi-Dargham, A. et al. Prefrontal dopamine D1 receptors and working memory in schizophrenia. J. Neurosci.22, 3708–3719 (2002). ArticleCASPubMed Google Scholar
Okubo, Y. et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature385, 634–636 (1997). ArticleCASPubMed Google Scholar
Abi-Dargham, A. & Moore, H. Prefrontal DA transmission at D1 receptors and the pathology of schizophrenia. Neuroscientist9, 404–416 (2003). ArticleCASPubMed Google Scholar
Lewis, D.A. et al. Dopamine transporter immunoreactivity in monkey cerebral cortex: Regional, laminar and ultrastructural localization. J. Comp. Neurol.432, 119–138 (2001). ArticleCASPubMed Google Scholar
Tunbridge, E.M., Bannerman, D.M., Sharp, T. & Harrison, P.J. Catechol-o-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. J. Neurosci.24, 5331–5335 (2004). ArticleCASPubMed Google Scholar
Chen, J. et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am. J. Hum. Genet.75, 807–821 (2004). ArticleCASPubMedPubMed Central Google Scholar
Egan, M.F. et al. Effect of COMT Val 108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl. Acad. Sci. USA98, 6917–6922 (2001). ArticleCASPubMed Google Scholar
Meyer-Lindenberg, A. et al. Impact of complex genetic variation in COMT on human brain function. Mol. Psychiatry advance online publication 20 June 2006 (doi:10.1038/sj.mp.4001860).
Sesack, S.R. & Carr, D.B. Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia. Physiol. Behav.77, 513–517 (2002). ArticleCASPubMed Google Scholar
Kellendonk, C. et al. Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron49, 603–615 (2006). ArticleCASPubMed Google Scholar
Laruelle, M. Dopamine transmission in the schizophrenic brain. in Schizophrenia (eds. Hirsch, S.R. & Weinberger, D.) 365–386 (Blackwell Publishing Co., Malden, Massachusetts, 2003). Chapter Google Scholar
Rao, S.G., Williams, G.V. & Goldman-Rakic, P.S. Destruction and creation of spatial tuning by disinhibition: GABAA blockade of prefrontal cortical neurons engaged by working memory. J. Neurosci.20, 485–494 (2000). ArticleCASPubMed Google Scholar
Sawaguchi, T., Matsumura, M. & Kubota, K. Delayed response deficits produced by local injection of bicuculline into the dorsolateral prefrontal cortex in Japanese macaque monkeys. Exp. Brain Res.75, 457–469 (1989). ArticleCASPubMed Google Scholar
Akbarian, S. et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch. Gen. Psychiatry52, 258–266 (1995). ArticleCASPubMed Google Scholar
Volk, D.W., Austin, M.C., Pierri, J.N., Sampson, A.R. & Lewis, D.A. Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch. Gen. Psychiatry57, 237–245 (2000). ArticleCASPubMed Google Scholar
Volk, D., Austin, M.C., Pierri, J.N., Sampson, A.R. & Lewis, D.A. GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: Decreased expression in a subset of neurons. Am. J. Psychiatry158, 256–265 (2001). ArticleCASPubMed Google Scholar
Hashimoto, T. et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J. Neurosci.23, 6315–6326 (2003). ArticleCASPubMed Google Scholar
Woo, T-U., Whitehead, R.E., Melchitzky, D.S. & Lewis, D.A. A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc. Natl. Acad. Sci. USA95, 5341–5346 (1998). ArticleCASPubMed Google Scholar
Volk, D.W. et al. Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. Cereb. Cortex12, 1063–1070 (2002). ArticlePubMed Google Scholar
Whittington, M.A. & Traub, R.D. Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci.26, 676–682 (2003). ArticleCASPubMed Google Scholar
Howard, M.W. et al. Gamma oscillations correlate with working memory load in humans. Cereb. Cortex13, 1369–1374 (2003). ArticlePubMed Google Scholar
Cho, R.Y., Konecky, R.O. & Carter, C.S. Impairments in gamma band synchronization and context processing in schizophrenia. Schizophr. Bull.31, 450–451 (2005). Article Google Scholar
Akbarian, S. & Huang, H.S. Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res. Brain Res. Rev. published online 8 June 2006 (doi:10.1016/j.brainresrev.2006.04.001).
Spencer, K.M. et al. Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc. Natl. Acad. Sci. USA101, 17288–17293 (2004). ArticleCASPubMed Google Scholar
Goldman-Rakic, P.S., Castner, S.A., Svensson, T.H., Siever, L.J. & Williams, G.V. Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl.)174, 3–16 (2004). ArticleCAS Google Scholar
Coyle, J.T. & Tsai, G. The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology (Berl.)174, 32–38 (2004). ArticleCAS Google Scholar
Lewis, D.A., Volk, D.W. & Hashimoto, T. Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: A novel target for the treatment of working memory dysfunction. Psychopharmacology (Berl.)174, 143–150 (2004). ArticleCAS Google Scholar
Torrey, E.F. et al. Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol. Psychiatry57, 252–260 (2005). ArticleCASPubMed Google Scholar
Jones, E.G. Cortical development and thalamic pathology in schizophrenia. Schizophr. Bull.23, 483–501 (1997). ArticleCASPubMed Google Scholar
Lewis, D.A. & Moghaddam, B. Cognitive dysfuntion in schizophrenia: convergence of GABA and glutamate alterations. Arch. Neurol. (in the press).
Gulyás, A.I., Megías, M., Emri, Z. & Freund, T.F. Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J. Neurosci.19, 10082–10097 (1999). ArticlePubMed Google Scholar
Melchitzky, D.S. & Lewis, D.A. Pyramidal neuron local axon terminals in monkey prefrontal cortex: Differential targeting of subclasses of GABA neurons. Cereb. Cortex13, 452–460 (2003). ArticlePubMed Google Scholar
Huntley, G.W. et al. Distribution and synaptic localization of immunocytochemically identified NMDA receptor subunit proteins in sensory-motor and visual cortices of monkey and human. J. Neurosci.14, 3603–3619 (1994). ArticleCASPubMed Google Scholar
Huntley, G.W., Vickers, J.C. & Morrison, J.H. Quantitative localization of NMDAR1 receptor subunit immunoreactivity in inferotemporal and prefrontal association cortices of monkey and human. Brain Res.749, 245–262 (1997). ArticleCASPubMed Google Scholar
Keilhoff, G., Becker, A., Grecksch, G., Wolf, G. & Bernstein, H.G. Repeated application of ketamine to rats induces changes in the hippocampal expression of parvalbumin, neuronal nitric oxide synthase and cFOS similar to those found in human schizophrenia. Neuroscience126, 591–598 (2004). ArticleCASPubMed Google Scholar
Cochran, S.M. et al. Induction of metabolic hypofunction and neurochemical deficits after chronic intermittent exposure to phencyclidine: differential modulation by antipsychotic drugs. Neuropsychopharmacology28, 265–275 (2003). ArticleCASPubMed Google Scholar
Kinney, J.W. et al. A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. J. Neurosci.26, 1604–1615 (2006). ArticleCASPubMed Google Scholar
Cunningham, M.O. et al. Region-specific reduction in entorhinal gamma oscillations and parvalbumin-immunoreactive neurons in animal models of psychiatric illness. J. Neurosci.26, 2767–2776 (2006). ArticleCASPubMed Google Scholar
Woo, T.-U., Walsh, J.P. & Benes, F.M. Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch. Gen. Psychiatry61, 649–657 (2004). ArticleCASPubMed Google Scholar
Corfas, G., Roy, K. & Buxbaum, J.D. Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat. Neurosci.7, 575–580 (2004). ArticleCASPubMed Google Scholar
Flames, N. et al. Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron44, 251–261 (2004). ArticleCASPubMed Google Scholar
Yau, H.J., Wang, H.F., Lai, C. & Liu, F.C. Neural development of the neuregulin receptor ErbB4 in the cerebral cortex and the hippocampus: preferential expression by interneurons tangentially migrating from the ganglionic eminences. Cereb. Cortex13, 252–264 (2003). ArticlePubMed Google Scholar
Tsukada, H. et al. Chronic NMDA antagonism impairs working memory, decreases extracellular dopamine, and increases D1 receptor binding in prefrontal cortex of conscious monkeys. Neuropsychopharmacology30, 1861–1869 (2005). ArticleCASPubMed Google Scholar
Narendran, R. et al. Altered prefrontal dopaminergic function in chronic recreational ketamine users. Am. J. Psychiatry162, 2352–2359 (2005). ArticlePubMed Google Scholar
Sesack, S.R., Hawrylak, V.A., Melchitzky, D.S. & Lewis, D.A. Dopamine innervation of a subclass of local circuit neurons in monkey prefrontal cortex: Ultrastructural analysis of tyrosine hydroxylase and parvalbumin immunoreactive structures. Cereb. Cortex8, 614–622 (1998). ArticleCASPubMed Google Scholar
Muly, E.C., Szigeti, K. & Goldman-Rakic, P.S. D1 receptor in interneurons of macaque prefrontal cortex: Distribution and subcellular location. J. Neurosci.18, 10553–10565 (1998). ArticleCASPubMed Google Scholar
Zaitsev, A.V. et al. Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. Cereb. Cortex15, 1178–1186 (2005). ArticleCASPubMed Google Scholar
Kroner, S., Krimer, L.S., Lewis, D.A. & Barrionuevo, G. Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons. Cereb. Cortex (doi:10.1093/cercor/bhl012).
Gonzalez-Burgos, G., Kroener, S., Seamans, J.K., Lewis, D.A. & Barrionuevo, G. Dopaminergic modulation of short-term synaptic plasticity in fast-spiking interneurons of primate dorsolateral prefrontal cortex. J. Neurophysiol.94, 4168–4177 (2005). ArticleCASPubMed Google Scholar
Mann, E.O., Radcliffe, C.A. & Paulsen, O. Hippocampal gamma-frequency oscillations: from interneurones to pyramidal cells, and back. J. Physiol. (Lond.)562, 55–63 (2005). ArticleCAS Google Scholar
Addington, A.M. et al. GAD1 (2q31.1), which encodes glutamic acid decarboxylase (GAD(67)), is associated with childhood-onset schizophrenia and cortical gray matter volume loss. Mol. Psychiatry10, 581–588 (2005). ArticleCASPubMed Google Scholar
Weickert, C.S. et al. Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch. Gen. Psychiatry61, 544–555 (2004). ArticleCASPubMed Google Scholar
Straub, R.E. et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am. J. Hum. Genet.71, 337–348 (2002). ArticleCASPubMedPubMed Central Google Scholar
Millar, J.K. et al. DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science310, 1187–1191 (2005). ArticleCASPubMed Google Scholar