Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy (original) (raw)

References

  1. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med. 5, 1249–1255 (1999).
    Article CAS Google Scholar
  2. Albert, M.L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998).
    Article CAS Google Scholar
  3. Ronchetti, A. et al. Role of antigen-presenting cells in cross-priming of cytotoxic T lymphocytes by apoptotic cells. J. Leukoc. Biol. 66, 247–251 (1999).
    Article CAS Google Scholar
  4. Gorla, R. et al. Differential priming to programmed cell death of superantigen-reactive lymphocytes of HIV patients. AIDS Res. Hum. Retroviruses 10, 1097–1103 (1994).
    Article CAS Google Scholar
  5. Winau, F. et al. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity 24, 105–117 (2006).
    Article CAS Google Scholar
  6. Casares, N. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202, 1691–1701 (2005).
    Article CAS Google Scholar
  7. Gardai, S.J. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123, 321–334 (2005).
    Article CAS Google Scholar
  8. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007).
    Article CAS Google Scholar
  9. Medzhitov, R. & Janeway, C.A., Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).
    Article CAS Google Scholar
  10. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).
    Article CAS Google Scholar
  11. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).
    Article CAS Google Scholar
  12. Blander, J.M. & Medzhitov, R. On regulation of phagosome maturation and antigen presentation. Nat. Immunol. 7, 1029–1035 (2006).
    Article CAS Google Scholar
  13. West, M.A. et al. Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305, 1153–1157 (2004).
    Article CAS Google Scholar
  14. Yarovinsky, F., Kanzler, H., Hieny, S., Coffman, R.L. & Sher, A. Toll-like receptor recognition regulates immunodominance in an antimicrobial CD4+ T cell response. Immunity 25, 655–664 (2006).
    Article CAS Google Scholar
  15. Beutler, B. et al. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu. Rev. Immunol. 24, 353–389 (2006).
    Article CAS Google Scholar
  16. Huang, B. et al. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res. 65, 5009–5014 (2005).
    Article CAS Google Scholar
  17. Barrat, F.J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139 (2005).
    Article CAS Google Scholar
  18. Shiratsuchi, A., Watanabe, I., Takeuchi, O., Akira, S. & Nakanishi, Y. Inhibitory effect of Toll-like receptor 4 on fusion between phagosomes and endosomes/lysosomes in macrophages. J. Immunol. 172, 2039–2047 (2004).
    Article CAS Google Scholar
  19. Delamarre, L., Couture, R., Mellman, I. & Trombetta, E.S. Enhancing immunogenicity by limiting susceptibility to lysosomal proteolysis. J. Exp. Med. 203, 2049–2055 (2006).
    Article CAS Google Scholar
  20. Seong, S.Y. & Matzinger, P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 4, 469–478 (2004).
    Article CAS Google Scholar
  21. Jiang, D. et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat. Med. 11, 1173–1179 (2005).
    Article CAS Google Scholar
  22. Biragyn, A. et al. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298, 1025–1029 (2002).
    Article CAS Google Scholar
  23. Park, J.S. et al. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am. J. Physiol. Cell Physiol. 290, C917–C924 (2006).
    Article CAS Google Scholar
  24. Tsung, A. et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J. Exp. Med. 201, 1135–1143 (2005).
    Article CAS Google Scholar
  25. Scaffidi, P., Misteli, T. & Bianchi, M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).
    Article CAS Google Scholar
  26. Wang, H. et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285, 248–251 (1999).
    Article CAS Google Scholar
  27. Rovere-Querini, P. et al. HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep. 5, 825–830 (2004).
    Article CAS Google Scholar
  28. Arbour, N.C. et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet. 25, 187–191 (2000).
    Article CAS Google Scholar
  29. Kiechl, S. et al. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med. 347, 185–192 (2002).
    Article CAS Google Scholar
  30. Erridge, C., Stewart, J. & Poxton, I.R. Monocytes heterozygous for the Asp299Gly and Thr399Ile mutations in the Toll-like receptor 4 gene show no deficit in lipopolysaccharide signalling. J. Exp. Med. 197, 1787–1791 (2003).
    Article CAS Google Scholar
  31. van der Graaf, C. et al. Functional consequences of the Asp299Gly Toll-like receptor-4 polymorphism. Cytokine 30, 264–268 (2005).
    Article CAS Google Scholar
  32. Cheng, I., Plummer, S.J., Casey, G. & Witte, J.S. Toll-like receptor 4 genetic variation and advanced prostate cancer risk. Cancer Epidemiol. Biomarkers Prev. 16, 352–355 (2007).
    Article CAS Google Scholar
  33. Kurts, C., Miller, J.F., Subramaniam, R.M., Carbone, F.R. & Heath, W.R. Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction. J. Exp. Med. 188, 409–414 (1998).
    Article CAS Google Scholar
  34. Shi, Y. & Rock, K.L. Cell death releases endogenous adjuvants that selectively enhance immune surveillance of particulate antigens. Eur. J. Immunol. 32, 155–162 (2002).
    Article CAS Google Scholar
  35. Tabeta, K. et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat. Immunol. 7, 156–164 (2006).
    Article CAS Google Scholar
  36. Janssen, E. et al. Efficient T cell activation via a Toll-Interleukin 1 Receptor-independent pathway. Immunity 24, 787–799 (2006).
    Article CAS Google Scholar
  37. Shi, Y., Evans, J.E. & Rock, K.L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003).
    Article CAS Google Scholar
  38. la Sala, A. et al. Extracellular ATP induces a distorted maturation of dendritic cells and inhibits their capacity to initiate Th1 responses. J. Immunol. 166, 1611–1617 (2001).
    Article CAS Google Scholar
  39. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).
    Article CAS Google Scholar
  40. Bauer, A.K. et al. Toll-like receptor 4 in butylated hydroxytoluene-induced mouse pulmonary inflammation and tumorigenesis. J. Natl. Cancer Inst. 97, 1778–1781 (2005).
    Article CAS Google Scholar
  41. Gardella, S. et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 3, 995–1001 (2002).
    Article CAS Google Scholar
  42. Messmer, D. et al. High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J. Immunol. 173, 307–313 (2004).
    Article CAS Google Scholar
  43. Dumitriu, I.E., Bianchi, M.E., Bacci, M., Manfredi, A.A. & Rovere-Querini, P. The secretion of HMGB1 is required for the migration of maturing dendritic cells. J. Leukoc. Biol. 81, 84–91 (2007).
    Article CAS Google Scholar
  44. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999).
    CAS PubMed Google Scholar
  45. Granda, T.G. et al. Circadian optimisation of irinotecan and oxaliplatin efficacy in mice with Glasgow osteosarcoma. Br. J. Cancer 86, 999–1005 (2002).
    Article CAS Google Scholar
  46. Lutz, M.B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223, 77–92 (1999).
    Article CAS Google Scholar
  47. Porgador, A., Yewdell, J.W., Deng, Y., Bennink, J.R. & Germain, R.N. Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 6, 715–726 (1997).
    Article CAS Google Scholar
  48. Van Rijn, B.B., Roest, M., Franx, A., Bruinse, H.W. & Voorbij, H.A. Single step high-throughput determination of Toll-like receptor 4 polymorphisms. J. Immunol. Methods 289, 81–87 (2004).
    Article CAS Google Scholar

Download references

Acknowledgements

We thank P. Aucouturier for helpful discussions; P. Tiberghien for providing DNA samples for genotyping; E. Vicaut for help in statistical analyses; S. Viaud and C. Chenot for technical assistance; the IGR animal facility for help in breeding transgenic mice; G. Lauvau (INSERM, University of Sofia Antipolis, Valbonne, France) for providing BALB/c TLR2 −/− mice; S. Akira (Osaka University, Japan) and B. Ryffel (CNRS Orleans, France) for C57BL/6 Tlr1 −/−, Tlr2 −/−, Tlr3 −/−, Tlr4 −/− (ref. 44), Tlr5 −/−, Tlr6 −/−, Tlr7 −/−, Tlr9 −/−, Trif −/− and Myd88 −/− mice; C. Théry (Institut Curie, Paris, France) for providing OVA-transfected TS/A cell and EL4 cells; E. Tartour (Hôpital Européen Georges-Pompidou, Assistance Publique–Hôpitaux de Paris, France) for providing B3Z and B09710 clones and A. Carpentier (Centre Hospitalier Universitaire Pitié Salpétrière, Paris, France) for providing CpG oligodeoxynucleotide 28. This work was supported by special grants from the Ligue contre le Cancer (G.K., L.Z.), Association pour le recherche contre le cancer (G.M.), Institut National contre le Cancer (L.Z., G.K.), Fondation pour la Recherche Médicale (G.K., L.Z., A.T.), Institut National de la Santé et de la Recherche Médicale (F.G.), Association for International Cancer Research (G.K., L.Z.) and European Union (DC-Thera, Allostem for L.Z., RIGHT for G.K.).

Author information

Author notes

  1. Lionel Apetoh, François Ghiringhelli, Antoine Tesniere, Guido Kroemer and Laurence Zitvogel: These authors contributed equally to this work.

Authors and Affiliations

  1. Institut Gustave Roussy (IGR), 39 rue Camille Desmoulins, Villejuif, F-94805, France
    Lionel Apetoh, François Ghiringhelli, Antoine Tesniere, Michel Obeid, Carla Ortiz, Alfredo Criollo, Grégoire Mignot, M Chiara Maiuri, Evelyn Ullrich, Guido Kroemer & Laurence Zitvogel
  2. Université Paris Sud, Kremlin Bicêtre, France
    Lionel Apetoh, François Ghiringhelli, Antoine Tesniere, Michel Obeid, Carla Ortiz, Alfredo Criollo, Grégoire Mignot, M Chiara Maiuri, Evelyn Ullrich, Francis Levi, Guido Kroemer & Laurence Zitvogel
  3. Institut National de la Santé et de la Recherche Médicale, U805 'Immunologie et immunothérapie des tumeurs', Villejuif, F-94805, France
    Lionel Apetoh, François Ghiringhelli, Carla Ortiz, Grégoire Mignot, Evelyn Ullrich, Thomas Tursz & Laurence Zitvogel
  4. Centre d'Investigations Cliniques Biothérapies CBT507, IGR, Villejuif, F-94805, France
    François Ghiringhelli & Laurence Zitvogel
  5. Institut National de la Santé et de la Recherche Médicale, U848 'Apoptosis, Cancer and Immunity', Villejuif, F-94805, France
    Antoine Tesniere, Michel Obeid, Alfredo Criollo, M Chiara Maiuri & Guido Kroemer
  6. Dipartimento di Farmacologia Sperimentale, Facoltà di Scienze Biotecnologiche, Università degli Studi di Napoli Federico II, Napoli, 80135, Italy
    M Chiara Maiuri
  7. Laboratoire de Recherche Translationnelle, IGR, Villejuif, F-94805, France
    Patrick Saulnier
  8. Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, 11030, New York, USA
    Huan Yang
  9. Institut National de la Santé et de la Recherche Médicale U653, 'Immunité et Cancer', Institut Curie, Paris, 75248, Cedex 05, France
    Sebastian Amigorena
  10. Molecular Immunology and Embryology, Centre National de la Recherche Scientifique IEM2815, Orléans, F-45071, France
    Bernard Ryffel
  11. Dynavax Technologies Corporation, Berkeley, 94710, California, USA
    Franck J Barrat
  12. Biochemical Institute, Christian-Albrecht-University Kiel, Kiel, D-24098, Germany
    Paul Saftig
  13. Institut National de la Santé et de la Recherche Médicale U776 'Biological rhythms and cancers', Paul Brouse Hospital, Villejuif, F-94807, France
    Francis Levi
  14. Institut National de la Santé et de la Recherche Médicale U735, Centre René Huguenin, FNCLCC, F-92210, St. Cloud, France
    Rosette Lidereau & Catherine Nogues
  15. Département de Biologie Cellulaire, Institut National de la Santé et de la Recherche Médicale, U567, CNRS, UMR 8104, Institut Cochin, Université Paris-Descartes, Faculté de Médecine René Descartes, Paris, F-75014, France
    Jean-Paul Mira
  16. Department of Medicine, IGR, Villejuif, F-94805, France
    Agnès Chompret, Fabrice André, Suzette Delaloge & Thomas Tursz
  17. Centre National de la Recherche Scientifique-FRE 2939, IGR, Villejuif, F-94805, France
    Virginie Joulin
  18. Institut National de la Santé et de la Recherche Médicale ERI20 'Nutrition, Hormones, Cancers', IGR, Villejuif, F-94805, France
    Françoise Clavel-Chapelon
  19. Department of Radiotherapy, IGR, Villejuif, F-94805, France
    Jean Bourhis

Authors

  1. Lionel Apetoh
    You can also search for this author inPubMed Google Scholar
  2. François Ghiringhelli
    You can also search for this author inPubMed Google Scholar
  3. Antoine Tesniere
    You can also search for this author inPubMed Google Scholar
  4. Michel Obeid
    You can also search for this author inPubMed Google Scholar
  5. Carla Ortiz
    You can also search for this author inPubMed Google Scholar
  6. Alfredo Criollo
    You can also search for this author inPubMed Google Scholar
  7. Grégoire Mignot
    You can also search for this author inPubMed Google Scholar
  8. M Chiara Maiuri
    You can also search for this author inPubMed Google Scholar
  9. Evelyn Ullrich
    You can also search for this author inPubMed Google Scholar
  10. Patrick Saulnier
    You can also search for this author inPubMed Google Scholar
  11. Huan Yang
    You can also search for this author inPubMed Google Scholar
  12. Sebastian Amigorena
    You can also search for this author inPubMed Google Scholar
  13. Bernard Ryffel
    You can also search for this author inPubMed Google Scholar
  14. Franck J Barrat
    You can also search for this author inPubMed Google Scholar
  15. Paul Saftig
    You can also search for this author inPubMed Google Scholar
  16. Francis Levi
    You can also search for this author inPubMed Google Scholar
  17. Rosette Lidereau
    You can also search for this author inPubMed Google Scholar
  18. Catherine Nogues
    You can also search for this author inPubMed Google Scholar
  19. Jean-Paul Mira
    You can also search for this author inPubMed Google Scholar
  20. Agnès Chompret
    You can also search for this author inPubMed Google Scholar
  21. Virginie Joulin
    You can also search for this author inPubMed Google Scholar
  22. Françoise Clavel-Chapelon
    You can also search for this author inPubMed Google Scholar
  23. Jean Bourhis
    You can also search for this author inPubMed Google Scholar
  24. Fabrice André
    You can also search for this author inPubMed Google Scholar
  25. Suzette Delaloge
    You can also search for this author inPubMed Google Scholar
  26. Thomas Tursz
    You can also search for this author inPubMed Google Scholar
  27. Guido Kroemer
    You can also search for this author inPubMed Google Scholar
  28. Laurence Zitvogel
    You can also search for this author inPubMed Google Scholar

Contributions

L.A., F.G., A.T., M.O., G.M., M.C.M. and E.U. performed the in vivo and in vitro experiments. C.O. performed in vitro experiments. A.C. performed immunoprecipitations. B.R. provided transgenic mice. F.J.B., H.Y. and F.L. provided essential reagents. R.L., C.N., J.-P.M., A.C., V.J., F.C.-C., S.D. and T.T. recorded and provided the patients' data. L.A. and P. Saulnier performed patients' genotyping. A.T., F.A. and F.G. conducted data analysis. S.A. offered scientific advice and gave technical hints on the direction of the study. L.Z. and G.K. conceived the study and wrote the manuscript. P. Saftig provided the LAMP2 −/− mice. J.B. set up the radiotherapy protocols in vivo.

Corresponding authors

Correspondence toGuido Kroemer or Laurence Zitvogel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

About this article

Cite this article

Apetoh, L., Ghiringhelli, F., Tesniere, A. et al. Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy.Nat Med 13, 1050–1059 (2007). https://doi.org/10.1038/nm1622

Download citation