Bone marrow as a priming site for T-cell responses to blood-borne antigen (original) (raw)
References
Fu, Y.-X. & Chaplin, D.D. Development and maturation of secondary lymphoid tissues. Annu. Rev. Immunol.17, 399–458 (1999). ArticleCAS Google Scholar
Lanzavecchia, A. & Sallusto, F. The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics. Curr. Opin. Immunol.13, 291–296 (2001). ArticleCAS Google Scholar
Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol.18, 767–811 (2000). ArticleCAS Google Scholar
Osmond, D.G. Production and selection of B lymphocytes in bone marrow: lymphostromal interactions and apoptosis in normal, mutant and transgenic mice. Adv. Exp. Med. Biol.355, 15–20 (1994). ArticleCAS Google Scholar
Koni, P.A. et al. Conditional vascular cell adhesion molecule 1 deletion in mice: impaired lymphocyte migration to bone marrow. J. Exp. Med.193, 741–753 (2001). ArticleCAS Google Scholar
Khazaie, K. et al. Persistence of dormant tumor cells in the bone marrow of tumor cell vaccinated mice correlates with long-term immunological protection. Proc. Natl. Acad. Sci. USA91, 7430–7434 (1994). ArticleCAS Google Scholar
Masopust, D., Vezys, V., Marzo, A.L. & Lefrancois, L. Preferential localization of effector memory cells in non-lymphoid tissue. Science, 291, 2413–2416 (2001). ArticleCAS Google Scholar
Marshall, D.R. et al. Measuring the diaspora for virus-specific CD8+ T cells. Proc. Natl. Acad. Sci. USA98, 6313–6318 (2001). ArticleCAS Google Scholar
Kuroda, M.J. et al. Simian immunodeficiency virus-specific cytotoxic T lymphocytes and cell-associated viral RNA levels in distinct lymphoid compartments of SIV mac-infected rhesus monkeys. Blood96, 1474–1479 (2000). CASPubMed Google Scholar
Feuerer, M. et al. Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int. J. Cancer92, 96–105 (2001). ArticleCAS Google Scholar
Müller, M. et al. EblacZ tumor dormancy in bone marrow and lymph nodes: active control of proliferating tumor cells by CD8+ immune T cells. Cancer Res.58, 5439–5446 (1998). PubMed Google Scholar
Feuerer, M. et al. Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat. Med.7, 452–458 (2001). ArticleCAS Google Scholar
Kearney, E.R., Pape, K.A., Loh, D.Y. & Jenkins, M.K. Visualization of peptide-specific cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327 (1994).
Limmer, A. et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T cell tolerance. Nat. Med.6, 1348–1354 (2000). ArticleCAS Google Scholar
Sanderson, S. & Shastri, N. LacZ inducible antigen/MHC-specific T cell hybrids. Int. Immunol.6, 369–376 (1994). ArticleCAS Google Scholar
Förg, P., von Hoegen, P. & Schirrmacher, V. Superiority of the ear pinna over muscle tissue as site for DNA vaccination. Gene Ther.5, 789–797 (1998). Article Google Scholar
Miyawaki, S. et al. A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice. Eur. J. Immunol.24, 429–434 (1994). ArticleCAS Google Scholar
Hommel, M. & Kyewski, B. Dynamic changes during the immune response in T cell-APC clusters isolated from lymph nodes. J. Exp. Med.197, 269–280 (2003). ArticleCAS Google Scholar
Aichele, P. et al. Peptide antigen treatment of naïve and virus-immune mice: antigen-specific tolerance versus immunopathology. Immunity, 6, 519–529 (1997). ArticleCAS Google Scholar
Coles, R.M., Mueller, S.N., Heath, W.R., Carbone, F.R. & Brooks, A.G. Progression of armed CTL from draining lymph node to spleen shortly after localized infection with herpes simplex virus 1. J. Immunol.168, 834–838 (2002). ArticleCAS Google Scholar
Berlin-Rufenach, C. et al. Lymphocyte migration in lymphocyte function-associated antigen (LFA)-1-deficient mice. J. Exp. Med.189, 1467–1478 (1999). ArticleCAS Google Scholar
Tripp, R.A., Topham, D.J., Watson, S.R. & Doherty, P.C. Bone marrow can function as a lymphoid organ during a primary immune response under conditions of disrupted lymphocyte trafficking. J. Immunol.158, 3716–3720 (1997). CASPubMed Google Scholar
Bain, B.J., Clark, D.M., Lampert, I.A. & Wilkins, B.S. Bone Marrow Pathology. edn. 3 114–116 (Blackwell Science, London, 2001). Book Google Scholar
Ruedl, C., Koebel, P., Bachmann, M., Hess, M. & Karjalainen, K. Anatomical origin of dendritic cells determines their life span in peripheral lymph nodes. J. Immunol.165, 4910–4916 (2000). ArticleCAS Google Scholar
Kamath, A.T. et al. The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J. Immunol.165, 6762–6770 (2000). ArticleCAS Google Scholar
Norbury, C.C., Hewlett, L.J., Prescott, A.R., Sharstri, N. & Watts, C. Class I MHC presentation of exogenous soluble antigen via macropinocytosis in bone marrow macrophages. Immunity43, 783–791 (1995). Article Google Scholar
Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity17, 211–220 (2002). ArticleCAS Google Scholar
den Haan, J.M.M., Lehar, S.M. & Bevan, M.J. CD8+ but not CD8− dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med.192, 1685–1695 (2000). ArticleCAS Google Scholar
Kaech, S.M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat. Immunol.2, 415–422 (2001). ArticleCAS Google Scholar
Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A. & Rocha, B. Response of naïve and memory CD8+ T cells to antigen stimulation in vivo. Nat. Immunol.1, 47–53 (2000). ArticleCAS Google Scholar
Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell76, 17–27 (1994). ArticleCAS Google Scholar
Karrer, U. et al. On the key role of secondary lymphoid organs in antiviral immune responses studied in alymphoplastic (aly/aly) and spleenless (Hox11−/−) mutant mice. J. Exp. Med.185, 2157–2170 (1997). ArticleCAS Google Scholar
Lakkis, F.G., Arakelov, A., Konieczny, B.T. & Inoue, Y. Immunologic ignorance of vascularized organ transplants in the absence of secondary lymphoid tissue. Nat. Med.6, 686–688 (2000). ArticleCAS Google Scholar
Chin, R., Zhou, P., Alegre, M.-L. & Fu, Y.X. Confounding factors complicate conclusions in aly model. Nat. Med.7, 1165–1166 (2001). ArticleCAS Google Scholar
Li, M. et al. Cell-associated ovalbumin is cross-presented much more efficiently than soluble ovalbumin in vivo. J. Immunol.166, 6099–6103 (2001). ArticleCAS Google Scholar
Krüger, A., Schirrmacher, V. & von Hoegen, P. Scattered micrometastasis visualized at the single cell level: detection and re-isolation of lacZ labeled metastasized lymphoma cells. Int. J. Cancer58, 275–284 (1994) Article Google Scholar
Robertson, J.M., Jensen, P.E. & Evavold, B.D. D011.10 and OT-II T cells recognize a C-terminal ovalbumin 323-339 epitope. J. Immunol.164, 4706–4712 (2000). ArticleCAS Google Scholar
Kärre, K., Ljunggren, H.G., Piontek, G. & Kiessling, R. Selective rejection of H-2 deficient lymphoma variants suggests alternative immune defence strategy. Nature319, 675–678 (1986). Article Google Scholar
Falo, L.D. Jr., Kovacsovics-Bankowski, M., Thompson, K. & Rock, K.L. Targeting antigen into the phagocytic pathway in vivo induces protective tumor immunity. Nat. Med.1, 649–653 (1995). ArticleCAS Google Scholar