Going deeper than microscopy: the optical imaging frontier in biology (original) (raw)

References

  1. Beauvoit, B., Evans, S.M., Jenkins, T.W., Miller, E.E. & Chance, B. Correlation between the light-scattering and the mitochondrial content of normal-tissues and transplantable rodent tumors. Anal. Biochem. 226, 167–174 (1995).
    CAS PubMed Google Scholar
  2. Webb, R.H. Theoretical basis of confocal microscopy. Methods Enzymol. 307, 3–20 (1999).A concise description of confocal microscopy technology and performance metrics.
    CAS PubMed Google Scholar
  3. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).An introduction of two-photon laser scanning fluorescence microscopy.
    CAS PubMed Google Scholar
  4. Helmchen, F. & Denk, W. Deep-tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).
    Article CAS PubMed Google Scholar
  5. Tsien, R.Y. Building and breeding molecules to spy on cells and tumors. FEBS Lett. 579, 927–932 (2005).A concise review of fluorescence reporters and probes for in vivo imaging.
    CAS PubMed Google Scholar
  6. Weissleder, R. & Pittet, M. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).
    CAS PubMed PubMed Central Google Scholar
  7. Stephens, D.J. & Allan, V.J. Light microscopy techniques for live cell imaging. Science 300, 82–86 (2003).
    CAS PubMed Google Scholar
  8. Zipfel, W.R., Williams, R.M. & Webb, W.W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1368–1376 (2003).
    Google Scholar
  9. Jain, R.K. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).
    CAS PubMed Google Scholar
  10. Sharpe, J. et al. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296, 541–545 (2002).An introduction of optical projection tomography.
    CAS PubMed Google Scholar
  11. Walls, J.R., Sled, J.G., Sharpe, J. & Henkelman, R.M. Resolution improvement in emission optical projection tomography. Phys. Med. Biol. 52, 2775–2790 (2007).
    PubMed Google Scholar
  12. Alanentalo, T. et al. High-resolution three-dimensional imaging of islet-infiltrate interactions based on optical projection tomography assessments of the intact adult mouse pancreas. J. Biomed. Opt. 13, 054070 (2008).
    PubMed Google Scholar
  13. Kerwin, J. et al. 3 dimensional modelling of early human brain development using optical projection tomography. BMC Neurosci. 5, 27 (2004).
    PubMed PubMed Central Google Scholar
  14. Boot, M.J. et al. In vitro whole-organ imaging: 4D quantification of growing mouse limb buds. Nat. Methods 5, 609–612 (2008).
    CAS PubMed Google Scholar
  15. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E.H.K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004).An introduction of selective plane illumination microscopy.
    CAS PubMed Google Scholar
  16. Huisken, J. & Stainier, D.Y. Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt. Lett. 32, 2608–2610 (2007).
    PubMed Google Scholar
  17. Verveer, P.J. et al. High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy. Nat. Methods 4, 311–313 (2007).
    CAS PubMed Google Scholar
  18. Dodt, H.U. et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336 (2007).
    CAS PubMed Google Scholar
  19. Ermolayev, V. et al. Ultramicroscopy reveals axonal transport impairments in cortical motor neurons at prion disease. Biophys. J. 96, 3390–3398 (2009).
    CAS PubMed PubMed Central Google Scholar
  20. Andreev, V.G., Karabutov, A.A. & Oraevsky, A.A. Detection of ultrawide-band ultrasound pulses in optoacoustic tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1383–1390 (2003).
    PubMed Google Scholar
  21. Wang, X. et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21, 803–806 (2003).A demonstration of blood-vessel imaging using optoacoustic (photoacoustic) tomography.
    CAS PubMed Google Scholar
  22. Ntziachristos, V., Ripoll, J., Wang, L.H.V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23, 313–320 (2005).
    CAS PubMed Google Scholar
  23. Zhang, H., Maslov, K., Stoica, G. & Wang, L.V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24, 848–851 (2006).An introduction of functional photoacoustic microscopy.
    CAS PubMed Google Scholar
  24. Razansky, D., Vinegoni, C. & Ntziachristos, V. Multispectral photoacoustic imaging of fluorochromes in small animals. Opt. Lett. 32, 2891–2893 (2007).
    CAS PubMed Google Scholar
  25. Maslov, K., Stoica, G. & Wang, L. In vivo dark field reflection-mode photoacoustic microscopy. Opt. Lett. 30, 625–627 (2005).
    PubMed Google Scholar
  26. Maslov, K., Zhang, H., Hu, S. & Wang, L. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt. Lett. 33, 929–931 (2008).
    PubMed Google Scholar
  27. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).
    CAS PubMed PubMed Central Google Scholar
  28. Tearney, G.J. et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997).
    CAS PubMed Google Scholar
  29. Bredfeldt, J.S., Vinegoni, C., Marks, D.L. & Boppart, S.A. Molecularly sensitive optical coherence tomography. Opt. Lett. 30, 495–497 (2005).
    CAS PubMed Google Scholar
  30. Skala, M.C., Crow, M.J., Wax, A. & Izatt, J.A. Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres. Nano Lett. 8, 3461–3467 (2008).
    CAS PubMed PubMed Central Google Scholar
  31. Sarunic, M.V., Applegate, B.E. & Izatt, J.A. Spectral domain second-harmonic optical coherence tomography. Opt. Lett. 30, 2391–2393 (2005).
    PubMed Google Scholar
  32. Drexler, W. & Fujimoto, J.G. State-of-the-art retinal optical coherence tomography. Prog. Retin. Eye Res. 27, 45–88 (2008).
    PubMed Google Scholar
  33. Chamberland, D. et al. Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent—an ex vivo preliminary rat study. Nanotechnology 19, 095101 (2008).
    PubMed Google Scholar
  34. Tolentino, T.P. et al. Measuring diffusion and binding kinetics by contact area FRAP. Biophys. J. 95, 920–930 (2008).
    CAS PubMed PubMed Central Google Scholar
  35. McNally, J.G. Quantitative FRAP in analysis of molecular binding dynamics in vivo. Methods Cell Biol. 85, 329–351 (2008).
    CAS PubMed Google Scholar
  36. Mavrakis, M., Rikhy, R., Lilly, M. & Lippincott-Schwartz, J. Fluorescence imaging techniques for studying Drosophila embryo development. Curr. Protoc. Cell Biol. 4, 18 (2008).
    PubMed Google Scholar
  37. Sprague, B.L., Pego, R.L., Stavreva, D.A. & McNally, J.G. Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys. J. 86, 3473–3495 (2004).
    CAS PubMed PubMed Central Google Scholar
  38. Provenzano, P.P., Eliceiri, K.W. & Keely, P.J. Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin. Exp. Metastasis 26, 357–370 (2008).
    PubMed Google Scholar
  39. Hallworth, R., Currall, B., Nichols, M.G., Wu, X. & Zuo, J. Studying inner ear protein-protein interactions using FRET and FLIM. Brain Res. 1091, 122–131 (2006).
    CAS PubMed PubMed Central Google Scholar
  40. Chen, Y., Mills, J.D. & Periasamy, A. Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71, 528–541 (2003).
    CAS PubMed Google Scholar
  41. Tadrous, P.J. Methods for imaging the structure and function of living tissues and cells: 2. fluorescence lifetime imaging. J. Pathol. 191, 229–234 (2000).
    CAS PubMed Google Scholar
  42. Bastiaens, P.I. & Squire, A. Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9, 48–52 (1999).
    CAS PubMed Google Scholar
  43. Rodriguez, L.G., Lockett, S.J. & Holtom, G.R. Coherent anti-stokes Raman scattering microscopy: a biological review. Cytometry A 69, 779–791 (2006).
    PubMed Google Scholar
  44. Rinia, H.A., Wurpel, G.W. & Muller, M. Measuring molecular order and orientation using coherent anti-stokes Raman scattering microscopy. Methods Mol. Biol. 400, 45–61 (2007).
    CAS PubMed Google Scholar
  45. Cheng, J.X. Coherent anti-Stokes Raman scattering microscopy. Appl. Spectrosc. 61, 197–208 (2007).
    PubMed PubMed Central Google Scholar
  46. Imanishi, Y., Lodowski, K.H. & Koutalos, Y. Two-photon microscopy: shedding light on the chemistry of vision. Biochemistry 46, 9674–9684 (2007).
    CAS PubMed Google Scholar
  47. Botvinick, E.L. & Shah, J.V. Laser-based measurements in cell biology. Methods Cell Biol. 82, 81–109 (2007).
    CAS PubMed Google Scholar
  48. Campagnola, P.J. & Loew, L.M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21, 1356–1360 (2003).
    CAS PubMed Google Scholar
  49. Patterson, M.S., Chance, B. & Wilson, B.C. Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical-properties. Appl. Opt. 28, 2331–2336 (1989).
    CAS PubMed Google Scholar
  50. Arridge, S.R. Optical tomography in medical imaging. Inverse Probl. 15, R41–R93 (1999).
    Google Scholar
  51. Shu, X. et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324, 804–807 (2009).
    PubMed PubMed Central Google Scholar
  52. Shashkov, E., Everts, M., Galanzha, E. & Zharov, V. Quantum dots as multimodal photoacoustic and photothermal contrast agents. Nano Lett. 8, 3953–3958 (2008).
    CAS PubMed PubMed Central Google Scholar
  53. De La Zerda et al. Carbon nano-tubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 3, 557–562 (2008).
    CAS PubMed PubMed Central Google Scholar
  54. Weissleder, R. & Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 9, 123–128 (2003).
    CAS PubMed Google Scholar
  55. Ntziachristos, V., Tung, C.H., Bremer, C. & Weissleder, R. Fluorescence molecular tomography resolves protease activity in vivo. Nat. Med. 8, 757–760 (2002).An introduction of fluorescence molecular tomography.
    CAS PubMed Google Scholar
  56. Ntziachristos, V. & Weissleder, R. Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation. Opt. Lett. 26, 893–895 (2001).
    CAS PubMed Google Scholar
  57. Schwaiger, M., Ziegler, S. & Nekolla, S. PET/CT: challenge for nuclear cardiology. J. Nucl. Med. 46, 1664–1678 (2005).
    PubMed Google Scholar
  58. Judenhofer, M.S. et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat. Med. 14, 459–465 (2008).
    CAS PubMed Google Scholar
  59. Barbour, R. et al. MRI-guided optical tomography: prospects and computation for a new imaging method. IEEE Comput. Sci. Eng. 2, 63–77 (1995).
    Google Scholar
  60. Ntziachristos, V., Yodh, A.G., Schnall, M. & Chance, B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
    CAS PubMed PubMed Central Google Scholar
  61. Brooksby, B. et al. Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography. Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
    CAS PubMed PubMed Central Google Scholar
  62. Davis, S.C. et al. Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue. Rev. Sci. Instrum. 79, 064302 (2008).
    PubMed PubMed Central Google Scholar
  63. Fang, Q. et al. Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression. IEEE Trans. Med. Imaging 28, 30–42 (2009).
    CAS PubMed PubMed Central Google Scholar
  64. Schulz, R. et al. Hybrid system for simultaneous fluorescence and X-ray computed tomography. IEEE Trans. Med. Imaging 29, 465–473 (2010).
    PubMed Google Scholar
  65. Hyde, D. et al. Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer's disease model. Neuroimage 44, 1304–1311 (2009).
    PubMed Google Scholar
  66. Lin, Y., Gao, H., Nalcioglu, O. & Gulsen, G. Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study. Phys. Med. Biol. 52, 5569–5585 (2007).
    CAS PubMed Google Scholar
  67. Guven, M., Yazici, B., Intes, X. & Chance, B. Diffuse optical tomography with a priori anatomical information. Phys. Med. Biol. 50, 2837–2858 (2005).
    PubMed Google Scholar
  68. Hintersteiner, M. et al. In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nat. Biotechnol. 23, 577–583 (2005).
    CAS PubMed Google Scholar
  69. Cox, B.T., Arridge, S.R., Kostli, K.P. & Beard, P.C. Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method. Appl. Opt. 45, 1866–1875 (2006).
    PubMed Google Scholar
  70. Rosenthal, A., Razansky, D. & Ntziachristos, V. Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography. IEEE Trans. Med. Imaging 29, 1275–1285 (2010).
    PubMed Google Scholar
  71. Bowen, T. Radiation-induced thermoacoustic soft-tissue imaging. Proc. IEEE Ultrason. Symp. 817–822 (1981).
  72. Zemp, R.J. et al. Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer. J. Biomed. Opt. 12, 010501 (2007).
    PubMed Google Scholar
  73. Allen, T.J. & Beard, P.C. Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging. Opt. Lett. 31, 3462–3464 (2006).
    PubMed Google Scholar
  74. Kolkman, R.G.M. et al. Photoacoustic determination of blood vessel diameter. Phys. Med. Biol. 49, 4745–4756 (2004).
    PubMed Google Scholar
  75. Eghtedari, M. et al. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett. 7, 1914–1918 (2007).
    CAS PubMed Google Scholar
  76. Cox, B., Arridge, S. & Beard, P. Estimating chromophore distributions from multiwavelength photoacoustic images. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 26, 443–455 (2009).
    CAS PubMed Google Scholar
  77. Jetzfellner, T., Rozenthal, A., Englmeier, K., Razansky, D. & Ntziachristos, V. Multispectral optoacoustic tomography by means of normalized spectral ratio. Opt. Lett. (in the press).
  78. Li, M. et al. Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc. IEEE 96, 481–489 (2008).
    CAS Google Scholar
  79. Li, L., Zemp, R., Lungu, G., Stoica, G. & Wang, L. Photoacoustic imaging of lacZ gene expression in vivo. J. Biomed. Opt. 12, 020504 (2007).
  80. Kruger, R.A, Kiser, W. Jr., Reinecke, D., Kruger, G. & Miller, K. Thermoacoustic optical molecular imaging of small animals. Mol. Imaging 2, 113–123 (2003).
    PubMed Google Scholar
  81. Rayavarapu, R. et al. Synthesis and bioconjugation of gold nanoparticles as potential molecular probes for light-based imaging techniques. Int. J. Biomed. Imaging 2007 29817 (2007).
  82. Li, L., Zemp, R.J., Lungu, G., Stoica, G. & Wang, L.V. Photoacoustic imaging of lacZ gene expression in vivo. J. Biomed. Opt. 12, 020504 (2007).
    PubMed Google Scholar
  83. Galanzha, E. et al. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 4, 855–860 (2009).
    CAS PubMed PubMed Central Google Scholar
  84. Vinegoni, C., Pitsouli, C., Razansky, D., Perrimon, N. & Ntziachristos, V. In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography. Nat. Methods 5, 45–47 (2008).
    CAS PubMed Google Scholar
  85. Razansky, D. et al. Imaging of mesoscopic targets using selective-plane optoacoustic tomography. Nat. Photonics 3, 412–417 (2009).A demonstration of visualizing optical reporter molecules in vivo using mesoscopic multispectral optoacoustic tomography.
    CAS Google Scholar
  86. Jain, R.K., Munn, L.L. & Fukumura, D. Dissecting tumour pathophysiology using intravital microscopy. Nat. Rev. Cancer 2, 266–276 (2002).A description of in vivo applications of intravital microscopy in cancer.
    CAS PubMed Google Scholar
  87. Wang, T.D., Contag, C.H., Mandella, M.J., Chan, N.Y. & Kino, G.S. Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning. J. Biomed. Opt. 9, 735–742 (2004).
    PubMed Google Scholar
  88. Sipkins, D.A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005).
    CAS PubMed PubMed Central Google Scholar
  89. Kleinfeld, D., Mitra, P.P., Helmchen, F. & Denk, W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).
    CAS PubMed PubMed Central Google Scholar
  90. Majewska, A.K., Newton, J.R. & Sur, M. Remodeling of synaptic structure in sensory cortical areas in vivo. J. Neurosci. 26, 3021–3029 (2006).
    CAS PubMed PubMed Central Google Scholar
  91. Germain, R.N. et al. An extended vision for dynamic high-resolution intravital immune imaging. Semin. Immunol. 17, 431–441 (2005).
    CAS PubMed PubMed Central Google Scholar
  92. Molitoris, B.A. & Sandoval, R.M. Intravital multiphoton microscopy of dynamic renal processes. Am. J. Physiol. Renal Physiol. 288, F1084–F1089 (2005).
    CAS PubMed Google Scholar
  93. Jobsis, F.F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264–1267 (1977).
    CAS PubMed Google Scholar
  94. Boas, D.A., Oleary, M.A., Chance, B. & Yodh, A.G. Scattering of diffuse photon fensity eaves ny dpherical inhomogeneities within turbid media—analytic solution and applications. Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
    CAS PubMed PubMed Central Google Scholar
  95. Schotland, J.C. Continuous-wave diffusion imaging. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14, 275–279 (1997).
    Google Scholar
  96. Cheong, W., Prahl, S. & Welch, A. A review of the optical-properties of biological tissues. IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    Google Scholar
  97. Beek, J.F., van Staveren, H.J., Posthumus, P., Sterenborg, H.J.C.M. & van Gemert, M.J.C. The optical properties of lung as a function of respiration. Phys. Med. Biol. 42, 2263–2272 (1997).
    CAS PubMed Google Scholar
  98. Pogue, B.W. et al. Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes. J. Biomed. Opt. 9, 541–552 (2004).
    CAS PubMed Google Scholar
  99. Niedre, M., Turner, G. & Ntziachristos, V. Time-resolved imaging of optical coefficients through murine chest cavities. J. Biomed. Opt. 11, 064017–064011–064017 (2006).
    Google Scholar

Download references