Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging (original) (raw)

References

  1. Hell, S.W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).
    Article CAS PubMed Google Scholar
  2. Huang, B., Babcock, H. & Zhuang, X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143, 1047–1058 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  3. Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  4. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).
    Article CAS PubMed Google Scholar
  5. Hess, S.T., Girirajan, T.P.K. & Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  6. Bates, M., Huang, B., Dempsey, G.T. & Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749–1753 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  7. Folling, J. et al. Photochromic rhodamines provide nanoscopy with optical sectioning. Angew. Chem. Int. Edn Engl. 46, 6266–6270 (2007).
    Article CAS Google Scholar
  8. Bock, H. et al. Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Appl. Phys. B 88, 161–165 (2007).
    Article CAS Google Scholar
  9. Conley, N.R., Biteen, J.S. & Moerner, W.E. Cy3-Cy5 covalent heterodimers for single-molecule photoswitching. J. Phys. Chem. B 112, 11878–11880 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  10. Folling, J. et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat. Methods 5, 943–945 (2008).
    Article PubMed Google Scholar
  11. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Edn Engl. 47, 6172–6176 (2008).
    Article CAS Google Scholar
  12. Huang, B., Jones, S.A., Brandenburg, B. & Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 5, 1047–1052 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  13. Flors, C., Ravarani, C.N. & Dryden, D.T. Super-resolution imaging of DNA labelled with intercalating dyes. ChemPhysChem 10, 2201–2204 (2009).
    Article CAS PubMed Google Scholar
  14. Zhuang, X. Nano-imaging with STORM. Nat. Photonics 3, 365–367 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  15. Heilemann, M., van de Linde, S., Mukherjee, A. & Sauer, M. Super-resolution imaging with small organic fluorophores. Angew. Chem. Int. Edn Engl. 48, 6903–6908 (2009).
    Article CAS Google Scholar
  16. Vogelsang, J., Cordes, T., Forthmann, C., Steinhauer, C. & Tinnefeld, P. Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc. Natl. Acad. Sci. USA 106, 8107–8112 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  17. Belov, V.N., Wurm, C.A., Boyarskiy, V.P., Jakobs, S. & Hell, S.W. Rhodamines NN: a novel class of caged fluorescent dyes. Angew. Chem. Int. Edn Engl. 49, 3520–3523 (2010).
    Article CAS Google Scholar
  18. Lee, H.L. et al. Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. J. Am. Chem. Soc. 132, 15099–15101 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  19. Schwering, M. et al. Far-field nanoscopy with reversible chemical reactions. Angew. Chem. Int. Edn Engl. 50, 2940–2945 (2011).
    Article CAS Google Scholar
  20. Jones, S.A., Shim, S.H., He, J. & Zhuang, X. Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods 8, 499–508 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  21. Baddeley, D. et al. 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues. PLoS ONE 6, e20645 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  22. Fernandez-Suarez, M. & Ting, A.Y. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 9, 929–943 (2008).
    Article CAS PubMed Google Scholar
  23. Patterson, G., Davidson, M., Manley, S. & Lippincott-Schwartz, J. Superresolution imaging using single-molecule localization. Annu. Rev. Phys. Chem. 61, 345–367 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  24. Hoyer, P., Staudt, T., Engelhardt, J. & Hell, S.W. Quantum dot blueing and blinking enables fluorescence nanoscopy. Nano Lett. 11, 245–250 (2011).
    Article CAS PubMed Google Scholar
  25. Habuchi, S. et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. USA 102, 9511–9516 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  26. Brakemann, T. et al. A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat. Biotechnol. 29, 942–947 (2011).
    Article CAS PubMed Google Scholar
  27. Grotjohann, T. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478, 204–208 (2011).
    Article CAS PubMed Google Scholar
  28. Patterson, G.H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002).
    Article CAS PubMed Google Scholar
  29. Subach, F.V. et al. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat. Methods 6, 153–159 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  30. Chudakov, D.M. et al. Photoswitchable cyan fluorescent protein for protein tracking. Nat. Biotechnol. 22, 1435–1439 (2004).
    Article CAS PubMed Google Scholar
  31. Wiedenmann, J. et al. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc. Natl. Acad. Sci. USA 101, 15905–15910 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  32. McKinney, S.A., Murphy, C.S., Hazelwood, K.L., Davidson, M.W. & Looger, L.L. A bright and photostable photoconvertible fluorescent protein. Nat. Methods 6, 131–133 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  33. Gurskaya, N.G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24, 461–465 (2006).
    Article CAS PubMed Google Scholar
  34. Sharonov, A. & Hochstrasser, R.M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl. Acad. Sci. USA 103, 18911–18916 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  35. Bates, M., Huang, B. & Zhuang, X. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr. Opin. Chem. Biol. 12, 505–514 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  36. Thompson, R.E., Larson, D.R. & Webb, W.W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).
    CAS PubMed PubMed Central Google Scholar
  37. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization. Science 300, 2061–2065 (2003).
    CAS PubMed Google Scholar
  38. Shroff, H., Galbraith, C.G., Galbraith, J.A. & Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5, 417–423 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  39. van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 6, 991–1009 (2011).
    Article CAS PubMed Google Scholar
  40. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  41. Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. Superresolution imaging of chemical synapses in the brain. Neuron 68, 843–856 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  42. Bates, M., Blosser, T.R. & Zhuang, X. Short-range spectroscopic ruler based on a single-molecule optical switch. Phys. Rev. Lett. 94, 108101 (2005).
    Article PubMed PubMed Central Google Scholar
  43. Heilemann, M., Margeat, E., Kasper, R., Sauer, M. & Tinnefeld, P. Carbocyanine dyes as efficient reversible single-molecule optical switch. J. Am. Chem. Soc. 127, 3801–3806 (2005).
    Article CAS PubMed Google Scholar
  44. Dempsey, G.T. et al. Photoswitching mechanism of cyanine dyes. J. Am. Chem. Soc. 131, 18192–18193 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  45. van de Linde, S. et al. Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging. Photochem. Photobiol. Sci. 10, 499–506 (2011).
    Article CAS PubMed Google Scholar
  46. Steinhauer, C., Forthmann, C., Vogelsang, J. & Tinnefeld, P. Superresolution microscopy on the basis of engineered dark states. J. Am. Chem. Soc. 130, 16840–16841 (2008).
    Article CAS PubMed Google Scholar
  47. Kottke, T., Van de Linde, S., Sauer, M., Kakorin, S. & Heilemann, M. Identification of the product of photoswitching of an oxazine fluorophore using Fourier transform infrared difference spectroscopy. J. Phys. Chem. Lett. 1, 3156–3159 (2010).
    Article CAS Google Scholar
  48. Testa, I. et al. Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophys. J. 99, 2686–2694 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  49. Dempsey, G.T., Wang, W. & Zhuang, X. Fluorescence imaging at sub-diffraction limit resolution with stochastic optical reconstruction microscopy. in Handbook of Single-molecule Biophysics (eds. P. Hinterdorfer, van Oijen, A.M.) 95–127 (Springer Science and Business Media, 2009).
  50. Riddles, P.W., Blakeley, R.L. & Zerner, B. Reassessment of Ellman's reagent. Methods Enzymol. 91, 49–60 (1983).
    Article CAS PubMed Google Scholar
  51. Rasnik, I., McKinney, S.A. & Ha, T. Nonblinking and longlasting single-molecule fluorescence imaging. Nat. Methods 3, 891–893 (2006).
    Article CAS PubMed Google Scholar
  52. Zhu, P.P. et al. Cellular localization, oligomerization, and membrane association of the hereditary spastic paraplegia 3A (SPG3A) protein atlastin. J. Biol. Chem. 278, 49063–49071 (2003).
    Article CAS PubMed Google Scholar
  53. Mortensen, K.I., Churchman, L.S., Spudich, J.A. & Flyvbjerg, H. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods 7, 377–381 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  54. Laurence, T.A. & Chromy, B.A. Efficient maximum likelihood estimator fitting of histograms. Nat. Methods 7, 338–339 (2010).
    Article CAS PubMed Google Scholar
  55. Bates, M., Jones, S. & Zhuang, X. Stochastic optical reconstruction microscopy (STORM)—a method for superresolution fluorescence imaging. in Imaging: A Laboratory Manual (ed. R. Yuste) 547–576 (Cold Spring Harbor Laboratory Press, 2011).

Download references