Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods3, 793–795 (2006). ArticleCASPubMedPubMed Central Google Scholar
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science313, 1642–1645 (2006). ArticleCASPubMed Google Scholar
Hess, S.T., Girirajan, T.P.K. & Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J.91, 4258–4272 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bates, M., Huang, B., Dempsey, G.T. & Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science317, 1749–1753 (2007). ArticleCASPubMedPubMed Central Google Scholar
Folling, J. et al. Photochromic rhodamines provide nanoscopy with optical sectioning. Angew. Chem. Int. Edn Engl.46, 6266–6270 (2007). ArticleCAS Google Scholar
Bock, H. et al. Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Appl. Phys. B88, 161–165 (2007). ArticleCAS Google Scholar
Conley, N.R., Biteen, J.S. & Moerner, W.E. Cy3-Cy5 covalent heterodimers for single-molecule photoswitching. J. Phys. Chem. B112, 11878–11880 (2008). ArticleCASPubMedPubMed Central Google Scholar
Folling, J. et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat. Methods5, 943–945 (2008). ArticlePubMed Google Scholar
Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Edn Engl.47, 6172–6176 (2008). ArticleCAS Google Scholar
Huang, B., Jones, S.A., Brandenburg, B. & Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods5, 1047–1052 (2008). ArticleCASPubMedPubMed Central Google Scholar
Flors, C., Ravarani, C.N. & Dryden, D.T. Super-resolution imaging of DNA labelled with intercalating dyes. ChemPhysChem10, 2201–2204 (2009). ArticleCASPubMed Google Scholar
Heilemann, M., van de Linde, S., Mukherjee, A. & Sauer, M. Super-resolution imaging with small organic fluorophores. Angew. Chem. Int. Edn Engl.48, 6903–6908 (2009). ArticleCAS Google Scholar
Vogelsang, J., Cordes, T., Forthmann, C., Steinhauer, C. & Tinnefeld, P. Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc. Natl. Acad. Sci. USA106, 8107–8112 (2009). ArticleCASPubMedPubMed Central Google Scholar
Belov, V.N., Wurm, C.A., Boyarskiy, V.P., Jakobs, S. & Hell, S.W. Rhodamines NN: a novel class of caged fluorescent dyes. Angew. Chem. Int. Edn Engl.49, 3520–3523 (2010). ArticleCAS Google Scholar
Lee, H.L. et al. Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. J. Am. Chem. Soc.132, 15099–15101 (2010). ArticleCASPubMedPubMed Central Google Scholar
Schwering, M. et al. Far-field nanoscopy with reversible chemical reactions. Angew. Chem. Int. Edn Engl.50, 2940–2945 (2011). ArticleCAS Google Scholar
Jones, S.A., Shim, S.H., He, J. & Zhuang, X. Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods8, 499–508 (2011). ArticleCASPubMedPubMed Central Google Scholar
Baddeley, D. et al. 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues. PLoS ONE6, e20645 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fernandez-Suarez, M. & Ting, A.Y. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol.9, 929–943 (2008). ArticleCASPubMed Google Scholar
Patterson, G., Davidson, M., Manley, S. & Lippincott-Schwartz, J. Superresolution imaging using single-molecule localization. Annu. Rev. Phys. Chem.61, 345–367 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hoyer, P., Staudt, T., Engelhardt, J. & Hell, S.W. Quantum dot blueing and blinking enables fluorescence nanoscopy. Nano Lett.11, 245–250 (2011). ArticleCASPubMed Google Scholar
Habuchi, S. et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. USA102, 9511–9516 (2005). ArticleCASPubMedPubMed Central Google Scholar
Brakemann, T. et al. A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat. Biotechnol.29, 942–947 (2011). ArticleCASPubMed Google Scholar
Grotjohann, T. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature478, 204–208 (2011). ArticleCASPubMed Google Scholar
Patterson, G.H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science297, 1873–1877 (2002). ArticleCASPubMed Google Scholar
Chudakov, D.M. et al. Photoswitchable cyan fluorescent protein for protein tracking. Nat. Biotechnol.22, 1435–1439 (2004). ArticleCASPubMed Google Scholar
Wiedenmann, J. et al. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc. Natl. Acad. Sci. USA101, 15905–15910 (2004). ArticleCASPubMedPubMed Central Google Scholar
McKinney, S.A., Murphy, C.S., Hazelwood, K.L., Davidson, M.W. & Looger, L.L. A bright and photostable photoconvertible fluorescent protein. Nat. Methods6, 131–133 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gurskaya, N.G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol.24, 461–465 (2006). ArticleCASPubMed Google Scholar
Sharonov, A. & Hochstrasser, R.M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl. Acad. Sci. USA103, 18911–18916 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bates, M., Huang, B. & Zhuang, X. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr. Opin. Chem. Biol.12, 505–514 (2008). ArticleCASPubMedPubMed Central Google Scholar
Thompson, R.E., Larson, D.R. & Webb, W.W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J.82, 2775–2783 (2002). CASPubMedPubMed Central Google Scholar
Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization. Science300, 2061–2065 (2003). CASPubMed Google Scholar
Shroff, H., Galbraith, C.G., Galbraith, J.A. & Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods5, 417–423 (2008). ArticleCASPubMedPubMed Central Google Scholar
van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc.6, 991–1009 (2011). ArticleCASPubMed Google Scholar
Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science319, 810–813 (2008). ArticleCASPubMedPubMed Central Google Scholar
Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. Superresolution imaging of chemical synapses in the brain. Neuron68, 843–856 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bates, M., Blosser, T.R. & Zhuang, X. Short-range spectroscopic ruler based on a single-molecule optical switch. Phys. Rev. Lett.94, 108101 (2005). ArticlePubMedPubMed Central Google Scholar
Heilemann, M., Margeat, E., Kasper, R., Sauer, M. & Tinnefeld, P. Carbocyanine dyes as efficient reversible single-molecule optical switch. J. Am. Chem. Soc.127, 3801–3806 (2005). ArticleCASPubMed Google Scholar
van de Linde, S. et al. Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging. Photochem. Photobiol. Sci.10, 499–506 (2011). ArticleCASPubMed Google Scholar
Steinhauer, C., Forthmann, C., Vogelsang, J. & Tinnefeld, P. Superresolution microscopy on the basis of engineered dark states. J. Am. Chem. Soc.130, 16840–16841 (2008). ArticleCASPubMed Google Scholar
Kottke, T., Van de Linde, S., Sauer, M., Kakorin, S. & Heilemann, M. Identification of the product of photoswitching of an oxazine fluorophore using Fourier transform infrared difference spectroscopy. J. Phys. Chem. Lett.1, 3156–3159 (2010). ArticleCAS Google Scholar
Testa, I. et al. Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophys. J.99, 2686–2694 (2010). ArticleCASPubMedPubMed Central Google Scholar
Dempsey, G.T., Wang, W. & Zhuang, X. Fluorescence imaging at sub-diffraction limit resolution with stochastic optical reconstruction microscopy. in Handbook of Single-molecule Biophysics (eds. P. Hinterdorfer, van Oijen, A.M.) 95–127 (Springer Science and Business Media, 2009).
Riddles, P.W., Blakeley, R.L. & Zerner, B. Reassessment of Ellman's reagent. Methods Enzymol.91, 49–60 (1983). ArticleCASPubMed Google Scholar
Rasnik, I., McKinney, S.A. & Ha, T. Nonblinking and longlasting single-molecule fluorescence imaging. Nat. Methods3, 891–893 (2006). ArticleCASPubMed Google Scholar
Zhu, P.P. et al. Cellular localization, oligomerization, and membrane association of the hereditary spastic paraplegia 3A (SPG3A) protein atlastin. J. Biol. Chem.278, 49063–49071 (2003). ArticleCASPubMed Google Scholar
Mortensen, K.I., Churchman, L.S., Spudich, J.A. & Flyvbjerg, H. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods7, 377–381 (2010). ArticleCASPubMedPubMed Central Google Scholar
Laurence, T.A. & Chromy, B.A. Efficient maximum likelihood estimator fitting of histograms. Nat. Methods7, 338–339 (2010). ArticleCASPubMed Google Scholar
Bates, M., Jones, S. & Zhuang, X. Stochastic optical reconstruction microscopy (STORM)—a method for superresolution fluorescence imaging. in Imaging: A Laboratory Manual (ed. R. Yuste) 547–576 (Cold Spring Harbor Laboratory Press, 2011).