Gene-pair expression signatures reveal lineage control (original) (raw)
Alberts, B. et al. Cells and genomes. in Molecular Biology of the Cell 3rd edn. Ch. 22 (Garland Science, New York, 1994).
Zhou, J.X. & Huang, S. Understanding gene circuits at cell-fate branch points for rational cell reprogramming. Trends Genet.27, 55–62 (2011). ArticleCASPubMed Google Scholar
Kauffman, S.A. Control circuits for determination and transdetermination. Science181, 310–318 (1973). ArticleCASPubMed Google Scholar
Kauffman, S.A., Shymko, R.M. & Trabert, K. Control of sequential compartment formation in Drosophila. Science199, 259–270 (1978). ArticleCASPubMed Google Scholar
Zhang, P. et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc. Natl. Acad. Sci. USA96, 8705–8710 (1999). ArticleCASPubMedPubMed Central Google Scholar
Huang, S. et al. Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev. Biol.305, 695–713 (2007). ArticleCASPubMed Google Scholar
Geman, D., d'Avignon, C., Naiman, D.Q. & Winslow, R.L. Classifying gene expression profiles from pairwise mRNA comparisons. Stat. Appl. Genet. Mol. Biol.3, Article 19 (2004). Article Google Scholar
Tan, A.C. et al. Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics21, 3896–3904 (2005). ArticleCASPubMed Google Scholar
Price, N.D. et al. Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas. Proc. Natl. Acad. Sci. USA104, 3414–3419 (2007). ArticleCASPubMedPubMed Central Google Scholar
Waddington, C.H. The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology (Allen & Unwin, London, 1957).
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007). ArticleCASPubMed Google Scholar
The ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature447, 799–816 (2007).
Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell133, 1106–1117 (2008). ArticleCASPubMed Google Scholar
Grass, J.A. et al. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc. Natl. Acad. Sci. USA100, 8811–8816 (2003). ArticleCASPubMedPubMed Central Google Scholar
Laslo, P. et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell126, 755–766 (2006). ArticleCASPubMed Google Scholar
Hu, M. et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev.11, 774–785 (1997). ArticleCASPubMed Google Scholar
Zhou, J.X., Brusch, L. & Huang, S. Predicting pancreas cell fate decisions and reprogramming with a hierarchical multi-attractor model. PLoS ONE6, e14752 (2011). ArticleCASPubMedPubMed Central Google Scholar
Miranda-Saavedra, D. & Göttgens, B. Transcriptional regulatory networks in haematopoiesis. Curr. Opin. Genet. Dev.18, 530–535 (2008). ArticleCASPubMed Google Scholar
Swiers, G., Patient, R. & Loose, M. Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev. Biol.294, 525–540 (2006). ArticleCASPubMed Google Scholar
Hoang, T. et al. Opposing effects of the basic helix-loop-helix transcription factor SCL on erythroid and monocytic differentiation. Blood87, 102–111 (1996). CASPubMed Google Scholar
Ma, C. & Staudt, L.M. LAF-4 encodes a lymphoid nuclear protein with transactivation potential that is homologous to AF-4, the gene fused to MLL in t(4;11) leukemias. Blood87, 734–745 (1996). ArticleCASPubMed Google Scholar
Nagasawa, M., Schmidlin, H., Hazekamp, M.G., Schotte, R. & Blom, B. Development of human plasmacytoid dendritic cells depends on the combined action of the basic helix-loop-helix factor E2-2 and the Ets factor Spi-B. Eur. J. Immunol.38, 2389–2400 (2008). ArticleCASPubMed Google Scholar
Hagman, J., Belanger, C., Travis, A., Turck, C.W. & Grosschedl, R. Cloning and functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression. Genes Dev.7, 760–773 (1993). ArticleCASPubMed Google Scholar
Zandi, S. et al. EBF1 is essential for B-lineage priming and establishment of a transcription factor network in common lymphoid progenitors. J. Immunol.181, 3364–3372 (2008). ArticleCASPubMed Google Scholar
Dontje, W. et al. Delta-like1-induced Notch1 signaling regulates the human plasmacytoid dendritic cell versus T-cell lineage decision through control of GATA-3 and Spi-B. Blood107, 2446–2452 (2006). ArticleCASPubMed Google Scholar
Rosa, A. et al. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proc. Natl. Acad. Sci. USA104, 19849–19854 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wei, G. et al. Genome-wide analyses of transcription factor GATA3-mediated gene regulation in distinct T cell types. Immunity35, 299–311 (2011). ArticleCASPubMedPubMed Central Google Scholar
Treiber, T. et al. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin. Immunity32, 714–725 (2010). ArticleCASPubMed Google Scholar
Duarte, N.C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. USA104, 1777–1782 (2007). ArticleCASPubMedPubMed Central Google Scholar
Pardo, M. et al. An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell6, 382–395 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kashyap, V. et al. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev.18, 1093–1108 (2009). ArticleCASPubMedPubMed Central Google Scholar
Li, J.-Y. et al. Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol. Cell Biol.27, 8748–8759 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sinkkonen, L. et al. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat. Struct. Mol. Biol.15, 259–267 (2008). ArticleCASPubMed Google Scholar
Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science324, 930–935 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature466, 1129–1133 (2010). ArticleCASPubMedPubMed Central Google Scholar
Neph, S. et al. Circuitry and dynamics of human transcription factor regulatory networks. Cell150, 1274–1286 (2012). CASPubMedPubMed Central Google Scholar
Wu, Z. & Irizarry, R.A. Stochastic models inspired by hybridization theory for short oligonucleotide arrays. J. Comput. Biol.12, 882–893 (2005). ArticleCASPubMed Google Scholar
Nishikawa, S.I. et al. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development125, 1747–1757 (1998). CASPubMed Google Scholar