Cellular-resolution connectomics: challenges of dense neural circuit reconstruction (original) (raw)

References

  1. Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Front. Human Neurosci. 3, 31 (2009).
    Article Google Scholar
  2. Azevedo, F.A. et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513, 532–541 (2009).
    Article Google Scholar
  3. Wedeen, V.J. et al. The geometric structure of the brain fiber pathways. Science 335, 1628–1634 (2012).
    Article CAS Google Scholar
  4. Craddock, R.C. Imaging human connectomes at the macroscale. Nat. Methods 10, 524–539 (2013).
    Article CAS Google Scholar
  5. Bohland, J.W. et al. A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLOS Comput. Biol. 5, e1000334 (2009).
    Article Google Scholar
  6. Osten, P. & Margrie, T.W. Mapping brain circuitry with a light microscope. Nat. Methods 10, 515–523 (2013).
    Article CAS Google Scholar
  7. Markram, H. The blue brain project. Nat. Rev. Neurosci. 7, 153–160 (2006).
    Article CAS Google Scholar
  8. Varshney, L.R., Chen, B.L., Paniagua, E., Hall, D.H. & Chklovskii, D.B. Structural properties of the Caenorhabditis elegans neuronal network. PLOS Comput. Biol. 7, e1001066 (2011).
    Article CAS Google Scholar
  9. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 (1986).
    Article CAS Google Scholar
  10. Chicurel, M.E. & Harris, K.M. Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J. Comp. Neurol. 325, 169–182 (1992).
    Article CAS Google Scholar
  11. Briggman, K.L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011).
    Article CAS Google Scholar
  12. Butcher, N.J., Friedrich, A.B., Lu, Z., Tanimoto, H. & Meinertzhagen, I.A. Different classes of input and output neurons reveal new features in microglomeruli of the adult Drosophila mushroom body calyx. J. Comp. Neurol. 520, 2185–2201 (2012).
    Article Google Scholar
  13. Fahrenbach, W.H. Anatomical circuitry of lateral inhibition in the eye of the horseshoe crab, Limulus polyphemus. Proc. R. Soc. Lond. B Biol. Sci. 225, 219–249 (1985).
    Article CAS Google Scholar
  14. Harris, K.M. et al. Uniform serial sectioning for transmission electron microscopy. J. Neurosci. 26, 12101–12103 (2006).
    Article CAS Google Scholar
  15. Mishchenko, Y. et al. Ultrastructural analysis of hippocampal neuropil from the connectomics perspective. Neuron 67, 1009–1020 (2010).
    Article CAS Google Scholar
  16. Bock, D.D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011).
    Article CAS Google Scholar
  17. Hayworth, K.J., Kasthuri, N., Schalek, R. & Lichtman, J.W. Automating the collection of ultrathin serial sections for large volume TEM reconstructions. Microsc. Microanal. 12 (suppl. 2), 86–87 (2006).
    Article Google Scholar
  18. Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).
    Article Google Scholar
  19. Knott, G., Marchman, H., Wall, D. & Lich, B. Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J. Neurosci. 28, 2959–2964 (2008).
    Article CAS Google Scholar
  20. Briggman, K.L. & Bock, D.D. Volume electron microscopy for neuronal circuit reconstruction. Curr. Opin. Neurobiol. 22, 154–161 (2012).
    Article CAS Google Scholar
  21. Cardona, A. et al. An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol. 8, e1000502 (2010).
    Article Google Scholar
  22. Kreshuk, A. et al. Automated detection and segmentation of synaptic contacts in nearly isotropic serial electron microscopy images. PLoS ONE 6, e24899 (2011).
    Article CAS Google Scholar
  23. Becker, C., Ali, K., Knott, G. & Fua, P. Learning context cues for synapse segmentation in EM volumes. Med. Image Comput. Comput. Assist. Interv. 15, 585–592 (2012).
    PubMed Google Scholar
  24. Fiala, J.C. Reconstruct: a free editor for serial section microscopy. J. Microsc. 218, 52–61 (2005).
    Article CAS Google Scholar
  25. Helmstaedter, M., Briggman, K.L. & Denk, W. High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nat. Neurosci. 14, 1081–1088 (2011).Algorithm-based apparatus for combining the reconstructions of many slightly trained annotators into a consensus reconstruction, a prerequisite for large-scale crowd-sourcing.
    Article CAS Google Scholar
  26. Xu, M. et al. Computer assisted assembly of connectomes from electron micrographs: application to Caenorhabditis elegans. PLoS ONE 8, e54050 (2013).
    Article CAS Google Scholar
  27. Jain, V. et al. Supervised learning of image restoration with convolutional networks. IEEE 11th International Conference on Computer Vision 1–8 (2007).
  28. Jain, V., Seung, H.S. & Turaga, S.C. Machines that learn to segment images: a crucial technology for connectomics. Curr. Opin. Neurobiol. 20, 653–666 (2010).
    Article CAS Google Scholar
  29. Turaga, S.C. et al. Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22, 511–538 (2010).
    Article Google Scholar
  30. Chklovskii, D.B., Vitaladevuni, S. & Scheffer, L.K. Semi-automated reconstruction of neural circuits using electron microscopy. Curr. Opin. Neurobiol. 20, 667–675 (2010).
    Article CAS Google Scholar
  31. Andres, B. et al. 3D segmentation of SBFSEM images of neuropil by a graphical model over supervoxel boundaries. Med. Image Anal. 16, 796–805 (2012).
    Article Google Scholar
  32. Andres, B., Köthe, U., Helmstaedter, M., Denk, W. & Hamprecht, F. Segmentation of SBFSEM volume data of neural tissue by hierarchical classification. in Pattern Recognition, Proc. DAGM 2008, Lecture Notes in Computer Science (ed., G. Rigoll) 5096, 142–152 (Springer, 2008).
  33. Funke, J., Andres, B., Hamprecht, F.A., Cardona, A. & Cook, M. Efficient automatic 3D-reconstruction of branching neurons from EM data. Proc. IEEE Conference on Computer Vision and Pattern Recognition 1004–1011 (2012).
  34. Jain, V. et al. Learning to agglomerate superpixel hierarchies. in Advances in Neural Information Processing Systems (eds., J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira and K.Q. Weinberger) 24, 648–656 (2011).
  35. Jarrell, T.A. et al. The connectome of a decision-making neural network. Science 337, 437–444 (2012).
    Article CAS Google Scholar
  36. Helmstaedter, M., Briggman, K.L., Turaga, S., Jain, V., Seung, H.S. & Denk, W. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature (in the press).
  37. Turaga, S.C. et al. Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22, 511–538 (2010).
    Article Google Scholar
  38. Mishchenko, Y. Automation of 3D reconstruction of neural tissue from large volume of conventional serial section transmission electron micrographs. J. Neurosci. Methods 176, 276–289 (2009).
    Article Google Scholar
  39. Seyedhosseini, M. et al. Detection of neuron membranes in electron microscopy images using multi-scale context and radon-like features. Med. Image Comput. Comput. Assist. Interv. 14, 670–677 (2011).
    PubMed PubMed Central Google Scholar
  40. Vazquez-Reina, A. et al. Segmentation fusion for connectomics. IEEE International Conference on Computer Vision 177–184 (2011).
  41. Sommer, C., Straehle, C., Koethe, U. & Hamprecht, F.A. ilastik: interactive learning and segmentation toolkit. Proc. IEEE International Symposium on Biomedical Imaging 8, 230–233 (2011).
    Google Scholar
  42. Straehle, C.N., Kothe, U., Knott, G. & Hamprecht, F.A. Carving: scalable interactive segmentation of neural volume electron microscopy images. Med. Image Comput. Comput. Assist. Interv. 14, 653–660 (2011).
    CAS PubMed Google Scholar
  43. Jeong, W. et al. Ssecrett and NeuroTrace: interactive visualization and analysis tools for large-scale neuroscience data sets. IEEE Comput. Graph. Appl. 30, 58–70 (2010).
    Article Google Scholar
  44. Roberts, M. et al. Neural process reconstruction from sparse user scribbles. Med. Image Comput. Comput. Assist. Interv. 14, 621–628 (2011).
    PubMed Google Scholar
  45. Cooper, S. et al. Predicting protein structures with a multiplayer online game. Nature 466, 756–760 (2010).Example of a computer game used for scientific discovery.
    Article CAS Google Scholar
  46. Land, K. et al. Galaxy Zoo: the large-scale spin statistics of spiral galaxies in the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 388, 1686–1692 (2008).
    Article CAS Google Scholar
  47. Saalfeld, S., Cardona, A., Hartenstein, V. & Tomancak, P. CATMAID: collaborative annotation toolkit for massive amounts of image data. Bioinformatics 25, 1984–1986 (2009).Online annotation platform for electron microscopy image data presented in successive 2D image planes.
    Article CAS Google Scholar
  48. Feldmeyer, D., Lubke, J., Silver, R.A. & Sakmann, B. Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J. Physiol. (Lond.) 538, 803–822 (2002).
    Article CAS Google Scholar
  49. Ramón y Cajal, S. Textura del sistema nervioso del hombre y de los vertebrados (Imprenta N. Moya, 1904).
  50. Rancz, E.A. et al. Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics. Nat. Neurosci. 14, 527–532 (2011).
    Article CAS Google Scholar
  51. Helmstaedter, M. & Mitra, P.P. Computational methods and challenges for large-scale circuit mapping. Curr. Opin. Neurobiol. 22, 162–169 (2012).
    Article CAS Google Scholar

Download references