An evaluation of 3C-based methods to capture DNA interactions (original) (raw)
References
Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science295, 1306–1311 (2002). ArticleCAS Google Scholar
Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell10, 1453–1465 (2002). ArticleCAS Google Scholar
Splinter, E., Grosveld, F. & de Laat, W. 3C technology: analyzing the spatial organization of genomic loci in vivo. Methods Enzymol.375, 493–507 (2004). ArticleCAS Google Scholar
Miele, A., Gheldof, N., Tabuchi, T.M., Dostie, J. & Dekker, J. Mapping chromatin interactions by chromosome conformation capture (3C). in Current Protocols in Molecular Biology (eds. Ausubel, F.M. et al.) 21.11.1–21.11.20 (John Wiley & Sons, Hoboken, New Jersey, USA, 2006). Google Scholar
Hagege, H. et al. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat. Protoc.2, 1722–1733 (2007). ArticleCAS Google Scholar
Dostie, J. & Dekker, J. Mapping networks of physical interactions between genomic elements using 5C technology. Nat. Protoc.2, 988–1002 (2007). ArticleCAS Google Scholar
Dekker, J. The three 'C' s of chromosome conformation capture: controls, controls, controls. Nat. Methods3, 17–21 (2006). ArticleCAS Google Scholar
Palstra, R.J. et al. The β-globin nuclear compartment in development and erythroid differentiation. Nat. Genet.35, 190–194 (2003). ArticleCAS Google Scholar
Murrell, A., Heeson, S. & Reik, W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat. Genet.36, 889–893 (2004). ArticleCAS Google Scholar
Spilianakis, C.G. & Flavell, R.A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat. Immunol.5, 1017–1027 (2004). ArticleCAS Google Scholar
Liu, Z. & Garrard, W.T. Long-range interactions between three transcriptional enhancers, active Vκ gene promoters, and a 3′ boundary sequence spanning 46 kilobases. Mol. Cell. Biol.25, 3220–3231 (2005). ArticleCAS Google Scholar
O'Sullivan, J.M. et al. Gene loops juxtapose promoters and terminators in yeast. Nat. Genet.36, 1014–1018 (2004). ArticleCAS Google Scholar
Skok, J.A. et al. Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nat. Immunol.8, 378–387 (2007). ArticleCAS Google Scholar
Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet.38, 1348–1354 (2006). ArticleCAS Google Scholar
de Laat, W. & Grosveld, F. Inter-chromosomal gene regulation in the mammalian cell nucleus. Curr. Opin. Genet. Dev., published online 18 September 2007 (doi:10.1016/j.gde.2007.07.009). ArticleCAS Google Scholar
Solomon, M.J. & Varshavsky, A. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc. Natl. Acad. Sci. USA82, 6470–6474 (1985). ArticleCAS Google Scholar
Orlando, V., Strutt, H. & Paro, R. Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods11, 205–214 (1997). ArticleCAS Google Scholar
Jackson, V. Formaldehyde cross-linking for studying nucleosomal dynamics. Methods17, 125–139 (1999). ArticleCAS Google Scholar
Hogan, G.J., Lee, C.K. & Lieb, J.D. Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genet.2, e158 (2006). Article Google Scholar
Giresi, P.G., Kim, J., McDaniell, R.M., Iyer, V.R. & Lieb, J.D. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res.17, 877–885 (2007). ArticleCAS Google Scholar
Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet.38, 1341–1347 (2006). ArticleCAS Google Scholar
Splinter, E. et al. CTCF mediates long-range chromatin looping and local histone modification in the β-globin locus. Genes Dev.20, 2349–2354 (2006). ArticleCAS Google Scholar
Wurtele, H. & Chartrand, P. Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology. Chromosome Res.14, 477–495 (2006). Article Google Scholar
Horike, S., Cai, S., Miyano, M., Cheng, J.F. & Kohwi-Shigematsu, T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat. Genet.37, 31–40 (2005). ArticleCAS Google Scholar
Cai, S., Lee, C.C. & Kohwi-Shigematsu, T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat. Genet.38, 1278–1288 (2006). ArticleCAS Google Scholar
Kumar, P.P. et al. Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nat. Cell Biol.9, 45–56 (2007). Article Google Scholar
Dostie, J. et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res.16, 1299–1309 (2006). ArticleCAS Google Scholar
Lomvardas, S. et al. Interchromosomal interactions and olfactory receptor choice. Cell126, 403–413 (2006). ArticleCAS Google Scholar
Branco, M.R. & Pombo, A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol.4, e138 (2006). Article Google Scholar