The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for necrosis initiation (original) (raw)

References

  1. Demaurex, N. & Distelhorst, C. Apoptosis—the calcium connection. Science 300, 65–67 (2003).
    Article CAS PubMed Google Scholar
  2. Leist, M. & Nicotera, P. Apoptosis, excitotoxicity, and neuropathology. Exp. Cell Res. 239, 183–201 (1998).
    Article CAS PubMed Google Scholar
  3. Verkhratsky, A. & Toescu, E.C. Endoplasmic reticulum Ca2+ homeostasis and neuronal death. J. Cell. Mol. Med. 7, 351–361 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  4. Mattson, M.P. et al. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 23, 222–229 (2000).
    CAS PubMed Google Scholar
  5. Xu, K., Tavernarakis, N. & Driscoll, M. Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca2+ release from the endoplasmic reticulum. Neuron 31, 957–971 (2001).
    Article CAS PubMed Google Scholar
  6. Driscoll, M. & Chalfie, M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349, 588–593 (1991).
    Article CAS PubMed Google Scholar
  7. Heintz, N. & Zoghbi, H.Y. Insights from mouse models into the molecular basis of neurodegeneration. Annu. Rev. Physiol. 62, 779–802 (2000).
    Article CAS PubMed Google Scholar
  8. Driscoll, M. & Gerstbrein, B. Dying for a cause: invertebrate genetics takes on human neurodegeneration. Nat. Rev. Gen. 4, 181–194 (2003).
    Article CAS Google Scholar
  9. Lai, C.C., Hong, K., Kinnell, M., Chalfie, M. & Driscoll, M. Sequence and transmembrane topology of MEC-4, an ion channel subunit required for mechanotransduction in Caenorhabditis elegans. J. Cell Biol. 133, 1071–1081 (1996).
    Article CAS PubMed Google Scholar
  10. Goodman, M.B. et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415, 1039–1042 (2002).
    Article CAS PubMed Google Scholar
  11. Chelur, D.S. et al. The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature 420, 669–673 (2002).
    Article CAS PubMed Google Scholar
  12. Bianchi, L. & Driscoll, M. The molecular basis of touch sensation as modeled in Caenorhabditis elegans. in Transduction Channels in Sensory Cells (eds Frings, S. & Bradely, J.) 1–29 (Wiley-VCH, Weinheim, Germany, 2004).
    Google Scholar
  13. Suzuki, H. et al. In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 39, 1005–1017 (2003).
    Article CAS PubMed Google Scholar
  14. Waldmann, R., Champigny, G., Voilley, N., Lauritzen, I. & Lazdunski, M. The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J. Biol. Chem. 271, 10433–10436 (1996).
    Article CAS PubMed Google Scholar
  15. Adams, C.M., Snyder, P.M., Price, M.P. & Welsh, M.J. Protons activate brain Na+ channel 1 by inducing a conformational change that exposes a residue associated with neurodegeneration. J. Biol. Chem. 273, 30204–30207 (1998).
    Article CAS PubMed Google Scholar
  16. Chalfie, M. & Wolinsky, E. The identification and suppression of inherited neurodegeneration in Caenorhabditis elegans. Nature 345, 410–416 (1990).
    Article CAS PubMed Google Scholar
  17. Hong, K. & Driscoll, M. A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans. Nature 367, 470–473 (1994).
    Article CAS PubMed Google Scholar
  18. Price, M.P. et al. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407, 1007–1011 (2000).
    Article CAS PubMed Google Scholar
  19. Wemmie, J.A. et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning and memory. Neuron 34, 463–477 (2002).
    Article CAS PubMed Google Scholar
  20. Wemmie, J.A. et al. Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J. Neurosci. 23, 5496–5502 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  21. Yermolaieva, O., Leonard, A.S., Schnizler, M.K., Abboud, F.M. & Welsh, M.J. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc. Natl. Acad. Sci. USA 101, 6752–6757 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  22. Xiong, Z.G. et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118, 687–698 (2004).
    Article CAS PubMed Google Scholar
  23. Syntichaki, P., Xu, K., Driscoll, M. & Tavernarakis, N. Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature 419, 939–944 (2002).
    Article CAS PubMed Google Scholar
  24. Metzstein, M.M., Stanfield, G.M. & Horvitz, H.R. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet. 14, 410–416 (1998).
    Article CAS PubMed Google Scholar
  25. Berridge, M.J. Inositol trisphosphate and calcium signalling. Nature 361, 315–325 (1993).
    Article CAS PubMed Google Scholar
  26. Verkhratsky, A. & Shmigol, A. Calcium-induced calcium release in neurones. Cell Calcium 19, 1–14 (1996).
    Article CAS PubMed Google Scholar
  27. Bargmann, C.I. Neurobiology of the Caenorhabditis elegans genome. Science 282, 2028–2033 (1998).
    Article CAS PubMed Google Scholar
  28. Jeziorski, M.C., Greenberg, R.M. & Anderson, P.A. The molecular biology of invertebrate voltage-gated Ca2+ channels. J. Exp. Biol. 203, 841–856 (2000).
    CAS PubMed Google Scholar
  29. Kuruma, A. & Hartzell, H.C. Dynamics of calcium regulation of chloride currents in Xenopus oocytes. Am. J. Physiol. 276, C161–C175 (1999).
    Article CAS PubMed Google Scholar
  30. Amasheh, S. & Weber, W. Further characteristics of the Ca2+-inactivated Cl− channel in Xenopus laevis oocytes. J. Membr. Biol. 172, 169–179 (1999).
    Article CAS PubMed Google Scholar
  31. Weber, W. Ion currents of Xenopus laevis oocytes: state of the art. Biochim. Biophys. Acta 1421, 213–233 (1999).
    Article CAS PubMed Google Scholar
  32. Woodhull, A.M. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61, 687–708 (1973).
    Article CAS PubMed PubMed Central Google Scholar
  33. Sheng, S., Li, J., McNulty, K.A., Avery, D. & Kleyman, T.R. Characterization of the selectivity filter of the epithelial sodium channel. J. Biol. Chem. 275, 8572–8581 (2000).
    Article CAS PubMed Google Scholar
  34. Sheng, S., McNulty, K.A., Harvey, J.M. & Kleyman, T.R. Second transmembrane domains of ENaC subunits contribute to ion permeation and selectivity. J. Biol. Chem. 276, 44091–44098 (2001).
    Article CAS PubMed Google Scholar
  35. Kellenberger, S., Hoffmann-Pochon, N., Gautschi, I., Schneeberger, E. & Schild, L. On the molecular basis of ion permeation in the epithelial Na+ channel. J. Gen. Physiol. 114, 13–30 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  36. Hong, K., Mano, I. & Driscoll, M. In vivo structure–function analyses of Caenorhabditis elegans MEC-4, a candidate mechanosensory ion channel subunit. J. Neurosci. 20, 2575–2588 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  37. Lee, R.Y., Lobel, L., Hengartner, M., Horvitz, H.R. & Avery, L. Mutations in the α1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J. 16, 6066–6076 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  38. Garcia-Anoveros, J., Garcia, J.A., Liu, J.D. & Corey, D.P. The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. Neuron 20, 1231–1241 (1998).
    Article CAS PubMed Google Scholar
  39. Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. & Lazdunski, M. A proton-gated cation channel involved in acid-sensing. Nature 386, 173–177 (1997).
    Article CAS PubMed Google Scholar
  40. Chu, X.P. et al. Proton-gated channels in PC12 cells. J. Neurophysiol. 87, 2555–2561 (2002).
    Article CAS PubMed Google Scholar
  41. Gunthorpe, M.J., Smith, G.D., Davis, J.B. & Randall, A.D. Characterisation of a human acid-sensing ion channel (hASIC1a) endogenously expressed in HEK293 cells. Pflugers Arch. 442, 668–674 (2001).
    Article CAS PubMed Google Scholar
  42. Sutherland, S.P., Benson, C.J., Adelman, J.P. & McCleskey, E.W. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc. Natl. Acad. Sci. USA 98, 711–716 (2001).
    Article CAS PubMed Google Scholar
  43. Zhang, P. & Canessa, C.M. Single channel properties of rat acid-sensitive ion channel-1α, -2a, and -3 expressed in Xenopus oocytes. J. Gen. Physiol. 120, 553–566 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  44. Bassler, E.L., Ngo-Anh, T.J., Geisler, H.S., Ruppersberg, J.P. & Grunder, S. Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J. Biol. Chem. 276, 33782–33787 (2001).
    Article CAS PubMed Google Scholar
  45. Mesaeli, N. et al. Calreticulin is essential for cardiac development. J. Cell Biol. 144, 857–868 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  46. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
    CAS PubMed PubMed Central Google Scholar
  47. Bianchi, L. et al. Mechanisms of _I_Ks suppression in LQT1 mutants. Am. J. Physiol. 279, H3003–H3011 (2000).
    CAS Google Scholar
  48. Christensen, M. et al. A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron 33, 503–514 (2002).
    Article CAS PubMed Google Scholar
  49. Thomas, D. et al. A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium 28, 213–223 (2000).
    Article CAS PubMed Google Scholar
  50. Kerr, R. et al. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26, 583–594 (2000).
    Article CAS PubMed Google Scholar

Download references