Mattson, M.P. et al. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci.23, 222–229 (2000). CASPubMed Google Scholar
Xu, K., Tavernarakis, N. & Driscoll, M. Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca2+ release from the endoplasmic reticulum. Neuron31, 957–971 (2001). ArticleCASPubMed Google Scholar
Driscoll, M. & Chalfie, M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature349, 588–593 (1991). ArticleCASPubMed Google Scholar
Heintz, N. & Zoghbi, H.Y. Insights from mouse models into the molecular basis of neurodegeneration. Annu. Rev. Physiol.62, 779–802 (2000). ArticleCASPubMed Google Scholar
Driscoll, M. & Gerstbrein, B. Dying for a cause: invertebrate genetics takes on human neurodegeneration. Nat. Rev. Gen.4, 181–194 (2003). ArticleCAS Google Scholar
Lai, C.C., Hong, K., Kinnell, M., Chalfie, M. & Driscoll, M. Sequence and transmembrane topology of MEC-4, an ion channel subunit required for mechanotransduction in Caenorhabditis elegans. J. Cell Biol.133, 1071–1081 (1996). ArticleCASPubMed Google Scholar
Goodman, M.B. et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature415, 1039–1042 (2002). ArticleCASPubMed Google Scholar
Chelur, D.S. et al. The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature420, 669–673 (2002). ArticleCASPubMed Google Scholar
Bianchi, L. & Driscoll, M. The molecular basis of touch sensation as modeled in Caenorhabditis elegans. in Transduction Channels in Sensory Cells (eds Frings, S. & Bradely, J.) 1–29 (Wiley-VCH, Weinheim, Germany, 2004). Google Scholar
Suzuki, H. et al. In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron39, 1005–1017 (2003). ArticleCASPubMed Google Scholar
Waldmann, R., Champigny, G., Voilley, N., Lauritzen, I. & Lazdunski, M. The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J. Biol. Chem.271, 10433–10436 (1996). ArticleCASPubMed Google Scholar
Adams, C.M., Snyder, P.M., Price, M.P. & Welsh, M.J. Protons activate brain Na+ channel 1 by inducing a conformational change that exposes a residue associated with neurodegeneration. J. Biol. Chem.273, 30204–30207 (1998). ArticleCASPubMed Google Scholar
Chalfie, M. & Wolinsky, E. The identification and suppression of inherited neurodegeneration in Caenorhabditis elegans. Nature345, 410–416 (1990). ArticleCASPubMed Google Scholar
Hong, K. & Driscoll, M. A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans. Nature367, 470–473 (1994). ArticleCASPubMed Google Scholar
Price, M.P. et al. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature407, 1007–1011 (2000). ArticleCASPubMed Google Scholar
Wemmie, J.A. et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning and memory. Neuron34, 463–477 (2002). ArticleCASPubMed Google Scholar
Wemmie, J.A. et al. Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J. Neurosci.23, 5496–5502 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yermolaieva, O., Leonard, A.S., Schnizler, M.K., Abboud, F.M. & Welsh, M.J. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc. Natl. Acad. Sci. USA101, 6752–6757 (2004). ArticleCASPubMedPubMed Central Google Scholar
Xiong, Z.G. et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell118, 687–698 (2004). ArticleCASPubMed Google Scholar
Syntichaki, P., Xu, K., Driscoll, M. & Tavernarakis, N. Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature419, 939–944 (2002). ArticleCASPubMed Google Scholar
Metzstein, M.M., Stanfield, G.M. & Horvitz, H.R. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet.14, 410–416 (1998). ArticleCASPubMed Google Scholar
Verkhratsky, A. & Shmigol, A. Calcium-induced calcium release in neurones. Cell Calcium19, 1–14 (1996). ArticleCASPubMed Google Scholar
Bargmann, C.I. Neurobiology of the Caenorhabditis elegans genome. Science282, 2028–2033 (1998). ArticleCASPubMed Google Scholar
Jeziorski, M.C., Greenberg, R.M. & Anderson, P.A. The molecular biology of invertebrate voltage-gated Ca2+ channels. J. Exp. Biol.203, 841–856 (2000). CASPubMed Google Scholar
Kuruma, A. & Hartzell, H.C. Dynamics of calcium regulation of chloride currents in Xenopus oocytes. Am. J. Physiol.276, C161–C175 (1999). ArticleCASPubMed Google Scholar
Amasheh, S. & Weber, W. Further characteristics of the Ca2+-inactivated Cl− channel in Xenopus laevis oocytes. J. Membr. Biol.172, 169–179 (1999). ArticleCASPubMed Google Scholar
Weber, W. Ion currents of Xenopus laevis oocytes: state of the art. Biochim. Biophys. Acta1421, 213–233 (1999). ArticleCASPubMed Google Scholar
Sheng, S., Li, J., McNulty, K.A., Avery, D. & Kleyman, T.R. Characterization of the selectivity filter of the epithelial sodium channel. J. Biol. Chem.275, 8572–8581 (2000). ArticleCASPubMed Google Scholar
Sheng, S., McNulty, K.A., Harvey, J.M. & Kleyman, T.R. Second transmembrane domains of ENaC subunits contribute to ion permeation and selectivity. J. Biol. Chem.276, 44091–44098 (2001). ArticleCASPubMed Google Scholar
Kellenberger, S., Hoffmann-Pochon, N., Gautschi, I., Schneeberger, E. & Schild, L. On the molecular basis of ion permeation in the epithelial Na+ channel. J. Gen. Physiol.114, 13–30 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hong, K., Mano, I. & Driscoll, M. In vivo structure–function analyses of Caenorhabditis elegans MEC-4, a candidate mechanosensory ion channel subunit. J. Neurosci.20, 2575–2588 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lee, R.Y., Lobel, L., Hengartner, M., Horvitz, H.R. & Avery, L. Mutations in the α1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J.16, 6066–6076 (1997). ArticleCASPubMedPubMed Central Google Scholar
Garcia-Anoveros, J., Garcia, J.A., Liu, J.D. & Corey, D.P. The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. Neuron20, 1231–1241 (1998). ArticleCASPubMed Google Scholar
Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. & Lazdunski, M. A proton-gated cation channel involved in acid-sensing. Nature386, 173–177 (1997). ArticleCASPubMed Google Scholar
Gunthorpe, M.J., Smith, G.D., Davis, J.B. & Randall, A.D. Characterisation of a human acid-sensing ion channel (hASIC1a) endogenously expressed in HEK293 cells. Pflugers Arch.442, 668–674 (2001). ArticleCASPubMed Google Scholar
Sutherland, S.P., Benson, C.J., Adelman, J.P. & McCleskey, E.W. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc. Natl. Acad. Sci. USA98, 711–716 (2001). ArticleCASPubMed Google Scholar
Zhang, P. & Canessa, C.M. Single channel properties of rat acid-sensitive ion channel-1α, -2a, and -3 expressed in Xenopus oocytes. J. Gen. Physiol.120, 553–566 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bassler, E.L., Ngo-Anh, T.J., Geisler, H.S., Ruppersberg, J.P. & Grunder, S. Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J. Biol. Chem.276, 33782–33787 (2001). ArticleCASPubMed Google Scholar
Bianchi, L. et al. Mechanisms of _I_Ks suppression in LQT1 mutants. Am. J. Physiol.279, H3003–H3011 (2000). CAS Google Scholar
Christensen, M. et al. A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron33, 503–514 (2002). ArticleCASPubMed Google Scholar
Thomas, D. et al. A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium28, 213–223 (2000). ArticleCASPubMed Google Scholar
Kerr, R. et al. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron26, 583–594 (2000). ArticleCASPubMed Google Scholar