Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration (original) (raw)
Stork, O., Welzl, H., Cremer, H. & Schachner, M. Increased intermale aggression and neuroendocrine response in mice deficient for the neural cell adhesion molecules. Eur. J. Neurosci.9, 1117–1125 (1997). CASPubMed Google Scholar
Stork, O. et al. Anxiety and increased 5-HT1A receptor response in NCAM null mutant mice. J. Neurobiol.40, 343–355 (1999). CASPubMed Google Scholar
Kenwrick, S., Watkins, A. & Angelis, E.D. Neural cell recognition molecule L1: relating biological complexity to human disease mutations. Hum. Mol. Genet.9, 879–886 (2000). CASPubMed Google Scholar
Frints, S.G.M. et al. CALL interrupted in a patient with nonspecific mental retardation: gene dosage-dependent alteration of murine brain development and behavior. Hum. Mol. Genet.12, 1463–1474 (2003). CASPubMed Google Scholar
Kurumaji, A., Nomoto, H., Okano, T. & Toru, M. An association study between polymorphism of L1CAM gene and schizophrenia in a Japanese sample. Am. J. Med. Genet.105, 99–104 (2001). CASPubMed Google Scholar
Sakurai, K., Migita, O., Toru, M. & Arinami, T. An association between a missense polymorphism in the close homologue of L1 (CHL1, CALL) gene and schizophrenia. Mol. Psychiatry7, 412–415 (2002). CASPubMed Google Scholar
Kleene, R. & Schachner, M. Glycans and neural cell interactions. Nat. Rev. Neurosci.5, 195–208 (2004). CASPubMed Google Scholar
Weinhold, B. et al. Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. J. Biol. Chem.280, 42971–42977 (2005). CASPubMed Google Scholar
Angata, K. et al. Sialyltransferase ST8Sia-II assembles a subset of polysialic acid that directs hippocampal axonal targeting and promotes fear behavior. J. Biol. Chem.279, 32603–32613 (2004). CASPubMed Google Scholar
Eckhardt, M. et al. Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. J. Neurosci.20, 5234–5244 (2000). CASPubMedPubMed Central Google Scholar
Petridis, A.K., El-Maarouf, A. & Rutishauser, U. Polysialic acid regulates cell contact-dependent neuronal differentiation of progenitor cells from the subventricular zone. Dev. Dyn.230, 675–684 (2004). CASPubMed Google Scholar
Johnson, C.P., Fujimoto, I., Rutishauser, U. & Leckband, D.E. Direct evidence that NCAM polysialylation increases intermembrane repulsion and abrogates adhesion. J. Biol. Chem.280, 137–145 (2005). CASPubMed Google Scholar
Persohn, E., Pollerberg, G.E. & Schachner, M. Immunoelectron-microscopic localization of the 180 kD component of the neural cell adhesion molecule N-CAM in postsynaptic membranes. J. Comp. Neurol.288, 92–100 (1989). CASPubMed Google Scholar
Polo-Parada, L., Bose, C.M. & Landmesser, L.T. Alterations in transmission, vesicle dynamics, and transmitter release machinery at NCAM-deficient neuromuscular junctions. Neuron32, 815–828 (2001). CASPubMed Google Scholar
Polo-Parada, L., Bose, C.M., Plattner, F. & Landmesser, L.T. Distinct roles of different neural cell adhesion molecule (NCAM) isoforms in synaptic maturation revealed by analysis of NCAM 180 kDa isoform-deficient mice. J. Neurosci.24, 1852–1864 (2004). CASPubMedPubMed Central Google Scholar
Polo-Parada, L., Plattner, F., Bose, C. & Landmesser, L.T. NCAM 180 acting via a conserved C-terminal domain and MLCK is essential for effective transmission with repetitive stimulation. Neuron46, 917–931 (2005). CASPubMed Google Scholar
Muhlenhoff, M., Eckhardt, M., Bethe, A., Frosch, M. & Gerardy-Schahn, R. Autocatalytic polysialylation of polysialyltransferase-1. EMBO J.15, 6943–6950 (1996). CASPubMedPubMed Central Google Scholar
Mendiratta, S.S., Sekulic, N., Lavie, A. & Colley, K.J. Specific amino acids in the first fibronectin type III repeat of the neural cell adhesion molecule play a role in its recognition and polysialylation by the polysialyltransferase ST8Sia IV/PST. J. Biol. Chem.280, 32340–32348 (2005). CASPubMed Google Scholar
Kiselyov, V.V., Soroka, V., Berezin, V. & Bock, E. Structural biology of NCAM homophilic binding and activation of FGFR. J. Neurochem.94, 1169–1179 (2005). CASPubMed Google Scholar
Anderson, A.A. et al. A peptide from the first fibronectin domain of NCAM acts as an inverse agonist and stimulates FGF receptor activation, neurite outgrowth and survival. J. Neurochem.95, 570–583 (2005). CASPubMed Google Scholar
Johnson, C.P., Fujimoto, I., Perrin-Tricaud, C., Rutishauser, U. & Leckband, D. Mechanism of homophilic adhesion by the neural cell adhesion molecule: use of multiple domains and flexibility. Proc. Natl. Acad. Sci. USA101, 6963–6968 (2004). CASPubMedPubMed Central Google Scholar
Doherty, P., Williams, G. & Williams, E.J. CAMs and axonal growth: a critical evaluation of the role of calcium and the MAPK cascade. Mol. Cell. Neurosci.16, 283–295 (2000). CASPubMed Google Scholar
Rao, Y., Zhao, X. & Siu, C.H. Mechanism of homophilic binding mediated by the neural cell adhesion molecule NCAM. Evidence for isologous interaction. J. Biol. Chem.269, 27540–27548 (1994). CASPubMed Google Scholar
Bennett, V. & Baines, A.J. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol. Rev.81, 1353–1392 (2001). CASPubMed Google Scholar
Dahlin-Huppe, K., Berglund, E.O., Ranscht, B. & Stallcup, W.B. Mutational analysis of the L1 neuronal cell adhesion molecule identifies membrane-proximal amino acids of the cytoplasmic domain that are required for cytoskeletal anchorage. Mol. Cell. Neurosci.9, 144–156 (1997). CASPubMed Google Scholar
Dickson, T.C., Mintz, C.D., Benson, D.L. & Salton, S.R. Functional binding interaction identified between the axonal CAM L1 and members of the ERM family. J. Cell Biol.157, 1105–1112 (2002). CASPubMedPubMed Central Google Scholar
Kamiguchi, H. et al. The neural cell adhesion molecule L1 interacts with the AP-2 adaptor and is endocytosed via the clathrin-mediated pathway. J. Neurosci.18, 5311–5321 (1998). CASPubMedPubMed Central Google Scholar
Jacob, J., Haspel, J., Kane-Goldsmith, N. & Grumet, M. L1 mediated homophilic binding and neurite outgrowth are modulated by alternative splicing of exon 2. J. Neurobiol.51, 177–189 (2002). CASPubMed Google Scholar
Castellani, V., De Angelis, E., Kenwrick, S. & Rougon, G. Cis and trans interactions of L1 with neuropilin-1 control axonal responses to semaphorin 3A. EMBO J.21, 6348–6357 (2002). CASPubMedPubMed Central Google Scholar
Julien, F. et al. Dual functional activity of semaphorin 3B is required for positioning the anterior commissure. Neuron48, 63–75 (2005). CASPubMed Google Scholar
Schuch, U., Lohse, M.J. & Schachner, M. Neural cell adhesion molecules influence second messenger systems. Neuron3, 13–20 (1989). CASPubMed Google Scholar
Beggs, H.E., Soriano, P. & Maness, P.F. NCAM-dependent neurite outgrowth is inhibited in neurons from _fyn_-minus mice. J. Cell Biol.127, 825–833 (1994). CASPubMed Google Scholar
Beggs, H.E., Baragona, S.C., Hemperly, J.J. & Maness, P.F. NCAM-140 interacts with the focal adhesion kinase p125fak and the src-related tyrosine kinase p59fyn. J. Biol. Chem.272, 8310–8319 (1997). CASPubMed Google Scholar
Schmid, R-S . et al. NCAM stimulates the Ras-MAPK pathway and CREB phosphorylation in neuronal cells. J. Neurobiol.38, 542–555 (1999). CASPubMed Google Scholar
Kolkova, K., Novitskaya, V., Pedersen, N., Berezin, V. & Bock, E. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway. J. Neurosci.20, 2238–2246 (2000). CASPubMedPubMed Central Google Scholar
Jessen, U. et al. The transcription factors CREB and c-Fos play key roles in NCAM- mediated neuritogenesis in PC12–E2 cells. J. Neurochem.79, 1149–1160 (2001). CASPubMed Google Scholar
Krushel, L.A., Cunningham, B.A., Edelman, G.M. & Crossin, K.L. NF-κB activity is induced by neural cell adhesion molecule binding to neurons and astrocytes. J. Biol. Chem.274, 2432–2439 (1999). CASPubMed Google Scholar
Saffell, J.L., Williams, E.J., Mason, I.J., Walsh, F.S. & Doherty, P. Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMs. Neuron18, 231–242 (1997). CASPubMed Google Scholar
Niethammer, P. et al. Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J. Cell Biol.157, 521–532 (2002). CASPubMedPubMed Central Google Scholar
Santuccione, A., Sytnyk, V., Leshchyns'ka, I. & Schachner, M. Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J. Cell Biol.169, 341–354 (2005). CASPubMedPubMed Central Google Scholar
Paratcha, G., Ledda, F. & Ibanez, C.F. The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell113, 867–879 (2003). CASPubMed Google Scholar
Felding-Habermann, B. et al. A single immunoglobulin-like domain of the human neural cell adhesion molecule L1 supports adhesion by multiple vascular and platelet integrins. J. Cell Biol.139, 1567–1581 (1997). CASPubMedPubMed Central Google Scholar
Thelen, K. et al. The neural cell adhesion molecule L1 potentiates integrin-dependent cell migration to extracellular matrix proteins. J. Neurosci.22, 4918–4931 (2002). CASPubMedPubMed Central Google Scholar
Silletti, S., Mei, F., Sheppard, D. & Montgomery, A.M. Plasmin-sensitive dibasic sequences in the third fibronectin-like domain of L1-cell adhesion molecule (CAM) facilitate homomultimerization and concomitant integrin recruitment. J. Cell Biol.149, 1485–1502 (2000). CASPubMedPubMed Central Google Scholar
Schaefer, A.W. et al. Activation of the MAPK signal cascade by the neural cell adhesion molecule L1 requires L1 internalization. J. Biol. Chem.274, 37965–37973 (1999). CASPubMed Google Scholar
Schmid, R.S., Pruitt, W.M. & Maness, P.F.A. MAP kinase signaling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis. J. Neurosci.20, 4177–4188 (2000). CASPubMedPubMed Central Google Scholar
Schmid, R.S., Midkiff, B.R., Kedar, V.P. & Maness, P.F. Adhesion molecule L1 stimulates neuronal migration through Vav2-Pak1 signaling. Neuroreport15, 2791–2794 (2004). CASPubMed Google Scholar
Ridley, A.J. et al. Cell migration: integrating signals from front to back. Science302, 1704–1709 (2003). CASPubMed Google Scholar
Cheng, L., Lemmon, S. & Lemmon, V. RanBPM is an L1-interacting protein that regulates L1-mediated mitogen-activated protein kinase activation. J. Neurochem.94, 1102–1110 (2005). CASPubMedPubMed Central Google Scholar
Silletti, S. et al. Extracellular signal-regulated kinase (ERK)-dependent gene expression contributes to L1 cell adhesion molecule-dependent motility and invasion. J. Biol. Chem.279, 28880–28888 (2004). CASPubMed Google Scholar
Demyanenko, G.P. et al. Close homolog of L1 modulates area-specific neuronal positioning and dendrite orientation in the cerebral cortex. Neuron44, 423–437 (2004). CASPubMed Google Scholar
Montag-Sallaz, M., Schachner, M. & Montag, D. Misguided axonal projections, neural cell adhesion molecule 180 mRNA upregulation, and altered behavior in mice deficient for the close homolog of L1. Mol. Cell. Biol.22, 7967–7981 (2002). CASPubMedPubMed Central Google Scholar
Demyanenko, G., Tsai, A. & Maness, P.F. Abnormalities in neuronal process extension, hippocampal development, and the ventricular system of L1 knockout mice. J. Neurosci.19, 4907–4920 (1999). CASPubMedPubMed Central Google Scholar
Buhusi, M. et al. Close homolog of L1 is an enhancer of integrin-mediated cell migration. J. Biol. Chem.278, 25024–25031 (2003). CASPubMed Google Scholar
Pratte, M., Rougon, G., Schachner, M. & Jamon, M. Mice deficient for the close homologue of the neural adhesion cell L1 (CHL1) display alterations in emotional reactivity and motor coordination. Behav. Brain Res.147, 31–39 (2003). CASPubMed Google Scholar
Irintchev, A., Koch, M., Needham, L.K., Maness, P. & Schachner, M. Impairment of sensorimotor gating in mice deficient in the cell adhesion molecule L1 or its close homologue, CHL1. Brain Res.1029, 131–134 (2004). CASPubMed Google Scholar
Lindner, J., Rathjen, F.G. & Schachner, M. L1 mono- and polyclonal antibodies modify cell migration in early post-natal mouse cerebellum. Nature305, 427–430 (1983). CASPubMed Google Scholar
Sakurai, T. et al. Overlapping functions of the cell adhesion molecules Nr-CAM and L1 in cerebellar granule cell development. J. Cell Biol.154, 1259–1273 (2001). CASPubMedPubMed Central Google Scholar
Diestel, S., Hinkle, C.L., Schmitz, B. & Maness, P.F. NCAM140 stimulates integrin-dependent cell migration by ectodomain shedding. J. Neurochem.95, 1777–1784 (2005). CASPubMed Google Scholar
Hubschmann, M.V., Skladchikova, G., Bock, E. & Berezin, V. Neural cell adhesion molecule function is regulated by metalloproteinase-mediated ectodomain release. J. Neurosci. Res.80, 826–837 (2005). PubMed Google Scholar
Hinkle, C.L., Diestel, S., Lieberman, J. & Maness, P.F. Metalloprotease-induced ectodomain shedding of neural cell adhesion molecule (NCAM). J. Neurobiol.66, 1378–1395 (2006). CASPubMed Google Scholar
Kalus, I., Bormann, U., Mzoughi, M., Schachner, M. & Kleene, R. Proteolytic cleavage of the neural cell adhesion molecule by ADAM17/TACE is involved in neurite outgrowth. J. Neurochem.98, 78–88 (2006). CASPubMed Google Scholar
Mechtersheimer, S. et al. Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J. Cell Biol.155, 661–673 (2001). CASPubMedPubMed Central Google Scholar
Maretzky, T. et al. L1 is sequentially processed by two differently activated metalloproteases and Presenilin/gamma-secretase and regulates neural cell adhesion, cell migration, and neurite outgrowth. Mol. Cell. Biol.25, 9040–9053 (2005). CASPubMedPubMed Central Google Scholar
Kalus, I., Schnegelsberg, B., Seidah, N.G., Kleene, R. & Schachner, M. The proprotein convertase PC5A and a metalloprotease are involved in the proteolytic processing of the neural adhesion molecule L1. J. Biol. Chem.278, 10381–10388 (2003). CASPubMed Google Scholar
Gutwein, P. et al. Role of Src kinases in the ADAM-mediated release of L1 adhesion molecule from human tumor cells. J. Biol. Chem.275, 15490–15497 (2000). CASPubMed Google Scholar
Heiz, M., Grunberg, J., Schubiger, P.A. & Novak-Hofer, I. Hepatocyte growth factor-induced ectodomain shedding of cell adhesion molecule L1: role of the L1 cytoplasmic domain. J. Biol. Chem.279, 31149–31156 (2004). CASPubMed Google Scholar
Naus, S. et al. Ectodomain shedding of the neural recognition molecule CHL1 by the metalloprotease-disintegrin ADAM8 promotes neurite outgrowth and suppresses neuronal cell death. J. Biol. Chem.279, 16083–16090 (2004). CASPubMed Google Scholar
Kamiguchi, H. & Lemmon, V. Recycling of the cell adhesion molecule L1 in axonal growth cones. J. Neurosci.20, 3676–3686 (2000). CASPubMedPubMed Central Google Scholar
Schaefer, A.W. et al. L1 endocytosis is controlled by a phosphorylation-dephosphorylation cycle stimulated by outside-in signaling by L1. J. Cell Biol.157, 1223–1232 (2002). CASPubMedPubMed Central Google Scholar
Panicker, A.K., Buhusi, M., Erickson, A. & Maness, P.F. Endocytosis of β1 integrins is an early event in migration promoted by the cell adhesion molecule L1. Exp. Cell Res.312, 299–307 (2006). CASPubMed Google Scholar
Cohen, N.R. et al. Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr. Biol.8, 26–33 (1998). CASPubMed Google Scholar
Rolf, B., Bastmeyer, M., Schachner, M. & Bartsch, U. Pathfinding errors of corticospinal axons in neural cell adhesion molecule-deficient mice. J. Neurosci.22, 8357–8362 (2002). CASPubMedPubMed Central Google Scholar
Castellani, V., Chedotal, A., Schachner, M., Faivre-Sarrailh, C. & Rougon, G. Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance. Neuron27, 237–249 (2000). CASPubMed Google Scholar
Fournier, A.E. et al. Semaphorin3A enhances endocytosis at sites of receptor-F-actin colocalization during growth cone collapse. J. Cell Biol.149, 411–422 (2000). CASPubMedPubMed Central Google Scholar
Castellani, V., Falk, J. & Rougon, G. Semaphorin3A-induced receptor endocytosis during axon guidance responses is mediated by L1 CAM. Mol. Cell. Neurosci.26, 89–100 (2004). CASPubMed Google Scholar
Wiencken-Barger, A.E., Mavity-Hudson, J., Bartsch, U., Schachner, M. & Casagrande, V.A. The role of L1 in axon pathfinding and fasciculation. Cereb. Cortex14, 121–131 (2004). CASPubMed Google Scholar
Demyanenko, G.P. & Maness, P.F. The L1 cell adhesion molecule is essential for topographic mapping of retinal axons. J. Neurosci.23, 530–538 (2003). CASPubMedPubMed Central Google Scholar
Feldheim, D.A. et al. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron25, 563–574 (2000). CASPubMed Google Scholar
Williams, S.E. et al. A role for Nr-CAM in the patterning of binocular visual pathways. Neuron50, 535–547 (2006). CASPubMed Google Scholar
Williams, S.E. et al. Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Neuron39, 919–935 (2003). CASPubMed Google Scholar
Bodrikov, V. et al. RPTPalpha is essential for NCAM-mediated p59fyn activation and neurite elongation. J. Cell Biol.168, 127–139 (2005). CASPubMedPubMed Central Google Scholar
Leshchyns'ka, I., Sytnyk, V., Morrow, J.S. & Schachner, M. Neural cell adhesion molecule (NCAM) association with PKCβ2 via βI spectrin is implicated in NCAM-mediated neurite outgrowth. J. Cell Biol.161, 625–639 (2003). CASPubMedPubMed Central Google Scholar
Needham, L.K., Thelen, K. & Maness, P.F. Cytoplasmic domain mutations of the L1 cell adhesion molecule reduce L1-ankyrin interactions. J. Neurosci.21, 1490–1500 (2001). CASPubMedPubMed Central Google Scholar
Garver, T.D., Ren, Q., Tuvia, S. & Bennett, V. Tyrosine phosphorylation at a site highly conserved in the L1 family of cell adhesion molecules abolishes ankyrin binding and increases lateral mobility of neurofascin. J. Cell Biol.137, 703–714 (1997). CASPubMedPubMed Central Google Scholar
Kizhatil, K., Wu, Y.X., Sen, A. & Bennett, V. A new activity of doublecortin in recognition of the phospho-Fig.Y tyrosine in the cytoplasmic domain of neurofascin. J. Neurosci.22, 7948–7958 (2002). CASPubMedPubMed Central Google Scholar
Whittard, J.D., Sakurai, T., Cassella, M.R., Gazdoiu, M. & Felsenfeld, D.P. MAP kinase pathway-dependent phosphorylation of the L1-CAM ankyrin binding site regulates neuronal growth. Mol. Biol. Cell17, 2696–2706 (2006). CASPubMedPubMed Central Google Scholar
Gil, O.D. et al. Ankyrin binding mediates L1CAM interactions with static components of the cytoskeleton and inhibits retrograde movement of L1CAM on the cell surface. J. Cell Biol.162, 719–730 (2003). CASPubMedPubMed Central Google Scholar
Nishimura, K. et al. L1-dependent neuritogenesis involves ankyrinB that mediates L1-CAM coupling with retrograde actin flow. J. Cell Biol.163, 1077–1088 (2003). CASPubMedPubMed Central Google Scholar
Nakai, Y. & Kamiguchi, H. Migration of nerve growth cones requires detergent-resistant membranes in a spatially defined and substrate-dependent manner. J. Cell Biol.159, 1097–1108 (2002). CASPubMedPubMed Central Google Scholar
Schafer, D.P., Bansal, R., Hedstrom, K.L., Pfeiffer, S.E. & Rasband, M.N. Does paranode formation and maintenance require partitioning of neurofascin 155 into lipid rafts? J. Neurosci.24, 3176–3185 (2004). CASPubMedPubMed Central Google Scholar
Falk, J., Thoumine, O., Dequidt, C., Choquet, D. & Faivre-Sarrailh, C. NrCAM coupling to the cytoskeleton depends on multiple protein domains and partitioning into lipid rafts. Mol. Biol. Cell15, 4695–4709 (2004). CASPubMedPubMed Central Google Scholar
Ango, F. et al. Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment. Cell119, 257–272 (2004). CASPubMed Google Scholar
Pillai-Nair, N. et al. Neural cell adhesion molecule-secreting transgenic mice display abnormalities in GABAergic interneurons and alterations in behavior. J. Neurosci.25, 4659–4671 (2005). CASPubMedPubMed Central Google Scholar
Huang, Z.J. Subcellular organization of GABAergic synapses: role of ankyrins and L1 cell adhesion molecules. Nat. Neurosci.9, 163–166 (2006). CASPubMed Google Scholar
Cheng, L., Itoh, K. & Lemmon, V. L1-mediated branching is regulated by two ezrin-radixin-moesin (ERM)-binding sites, the RSLE region and a novel juxtamembrane ERM-binding region. J. Neurosci.25, 395–403 (2005). CASPubMedPubMed Central Google Scholar
Mintz, C.D., Dickson, T.C., Gripp, M.L., Salton, S.R. & Benson, D.L. ERMs colocalize transiently with L1 during neocortical axon outgrowth. J. Comp. Neurol.464, 438–448 (2003). CASPubMed Google Scholar