DNA methylation analysis by pyrosequencing (original) (raw)
References
Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlén, M. & Nyrén, P. Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem.242, 84–89 (1996). ArticleCASPubMed Google Scholar
Ronaghi, M., Uhlén, M. & Nyrén, P. A sequencing method based on real-time pyrophosphate. Science281 363, 365 (1998). ArticleCASPubMed Google Scholar
Langaee, T. & Ronaghi, M. Genetic variation analyses by Pyrosequencing. Mutat. Res.573, 96–102 (2005). ArticleCASPubMed Google Scholar
Rickert, A.M., Premstaller, A., Gebhardt, C. & Oefner, P.J. Genotyping of Snps in a polyploid genome by pyrosequencing. Biotechniques32, 592–593, 596–598, 600 passim (2002). ArticleCASPubMed Google Scholar
Gruber, J.D., Colligan, P.B. & Wolford, J.K. Estimation of single nucleotide polymorphism allele frequency in DNA pools by using pyrosequencing. Hum. Genet.110, 395–401 (2002). ArticleCASPubMed Google Scholar
Lavebratt, C. & Sengul, S. Single nucleotide polymorphism (SNP) allele frequency estimation in DNA pools using pyrosequencing. Nat. Protoc.1, 2573–2582 (2006). ArticleCASPubMed Google Scholar
Pielberg, G., Day, A.E., Plastow, G.S. & Andersson, L. A sensitive method for detecting variation in copy numbers of duplicated genes. Genome Res.13, 2171–2177 (2003). ArticleCASPubMedPubMed Central Google Scholar
Laird, P.W. Early detection: the power and the promise of DNA methylation markers. Nat. Rev. Cancer3, 253–266 (2003). ArticleCASPubMed Google Scholar
Brena, R.M., Huang, T.H. & Plass, C. Quantitative assessment of DNA methylation: potential applications for disease diagnosis, classification, and prognosis in clinical settings. J. Mol. Med.84, 365–377 (2006). ArticleCASPubMed Google Scholar
Ehrich, M. et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl. Acad. Sci. USA102, 15785–15790 (2005). ArticleCASPubMed Google Scholar
Colella, S., Shen, L., Baggerly, K.A., Issa, J.P. & Krahe, R. Sensitive and quantitative universal pyrosequencing methylation analysis of CpG sites. Biotechniques35, 146–150 (2003). ArticleCASPubMed Google Scholar
Tost, J., Dunker, J. & Gut, I.G. Analysis and quantification of multiple methylation variable positions in CpG islands by pyrosequencing. Biotechniques35, 152–156 (2003). ArticleCASPubMed Google Scholar
Uhlmann, K., Brinckmann, A., Toliat, M.R., Ritter, H. & Nürnberg, P. Evaluation of a potential epigenetic biomarker by quantitative methyl-single nucleotide polymorphism analysis. Electrophoresis23, 4072–4079 (2002). ArticleCASPubMed Google Scholar
Tost, J., El Abdalaoui, H. & Gut, I.G. Serial pyrosequencing for quantitative DNA methylation analysis. Biotechniques40, 721–722, 724, 726 (2006). ArticleCASPubMed Google Scholar
Mirmohammadsadegh, A. et al. Epigenetic silencing of the PTEN gene in melanoma. Cancer Res.66, 6546–6552 (2006). ArticleCASPubMed Google Scholar
Xinarianos, G. et al. Frequent genetic and epigenetic abnormalities contribute to the deregulation of cytoglobin in non-small cell lung cancer. Hum. Mol. Genet.15, 2038–2044 (2006). ArticleCASPubMed Google Scholar
Schatz, P., Dietrich, D. & Schuster, M. Rapid analysis of CpG methylation patterns using RNase T1 cleavage and MALDI-TOF. Nucleic Acids Res.32, e167 (2004). ArticlePubMedPubMed Central Google Scholar
Yang, A.S. et al. DNA methylation changes after 5-aza-2′-deoxycytidine therapy in patients with leukemia. Cancer Res.66, 5495–5503 (2006). ArticleCASPubMed Google Scholar
White, H.E., Durston, V.J., Harvey, J.F. & Cross, N.C. Quantitative analysis of SNRPN (correction of SNRPN) gene methylation by pyrosequencing as a diagnostic test for Prader-Willi syndrome and Angelman syndrome. Clin. Chem.52, 1005–1013 (2006). ArticleCASPubMed Google Scholar
Wong, H.L. et al. Rapid and quantitative method of allele-specific DNA methylation analysis. Biotechniques41, 734–739 (2006). ArticleCASPubMed Google Scholar
Yang, A.S. et al. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res.32, e38 (2004). ArticlePubMedPubMed Central Google Scholar
Karimi, M. et al. LUMA (LUminometric Methylation Assay)—a high throughput method to the analysis of genomic DNA methylation. Exp. Cell Res.312, 1989–1995 (2006). ArticleCASPubMed Google Scholar
Li, L.C. & Dahiya, R. MethPrimer: designing primers for methylation PCRs. Bioinformatics18, 1427–1431 (2002). ArticleCASPubMed Google Scholar
Olek, A., Oswald, J. & Walter, J. A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res.24, 5064–5066 (1996). ArticleCASPubMedPubMed Central Google Scholar
Boyd, V.L. & Zon, G. Bisulfite conversion of genomic DNA for methylation analysis: protocol simplification with higher recovery applicable to limited samples and increased throughput. Anal. Biochem.326, 278–280 (2004). ArticleCASPubMed Google Scholar
Bian, Y.S., Yan, P., Osterheld, M.C., Fontolliet, C. & Benhattar, J. Promoter methylation analysis on microdissected paraffin-embedded tissues using bisulfite treatment and PCR-SSCP. Biotechniques30, 66–72 (2001). ArticleCASPubMed Google Scholar
Shiraishi, M. & Hayatsu, H. High-speed conversion of cytosine to uracil in bisulfite genomic sequencing analysis of DNA methylation. DNA Res.11, 409–415 (2004). ArticleCASPubMed Google Scholar
Dupont, J.M., Tost, J., Jammes, H. & Gut, I.G. De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal. Biochem.333, 119–127 (2004). ArticleCASPubMed Google Scholar
Warnecke, P.M. et al. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res.25, 4422–4426 (1997). ArticleCASPubMedPubMed Central Google Scholar
Wojdacz, T.K. & Hansen, L.L. Reversal of PCR bias for improved sensitivity of the DNA methylation melting curve assay. Biotechniques41 274, 276, 278 (2006). ArticleCASPubMed Google Scholar
Shen, L., Guo, Y., Chen, X., Ahmed, S. & Issa, J.P. Optimizing annealing temperature overcomes bias in bisulfite PCR methylation analysis. Biotechniques42, 48–52 (2007). ArticleCASPubMed Google Scholar