Kinetic flux profiling for quantitation of cellular metabolic fluxes (original) (raw)
References
Yuan, J., Fowler, W.U., Kimball, E., Lu, W. & Rabinowitz, J.D. Kinetic flux profiling of nitrogen assimilation in Escherichia coli. Nat. Chem. Biol.2, 529–530 (2006). ArticleCAS Google Scholar
Yuan, J. & Rabinowitz, J.D. Differentiating metabolites formed from de novo synthesis versus macromolecule decomposition. J. Am. Chem. Soc.129, 9294–9295 (2007). ArticleCAS Google Scholar
Brauer, M.J. et al. Conservation of the metabolomic response to starvation across two divergent microbes. Proc. Natl. Acad. Sci. USA103, 19302–19307 (2006). ArticleCAS Google Scholar
Kemp, G.J., Meyerspeer, M. & Moser, E. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. NMR Biomed.20, 555–565 (2007). ArticleCAS Google Scholar
Cudalbu, C., Cavassila, S., Rabeson, H., van Ormondt, D. & Graveron-Demilly, D. Influence of measured and simulated basis sets on metabolite concentration estimates. NMR Biomed.21, 627–636 (2008). ArticleCAS Google Scholar
Wu, L. et al. Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal. Biochem.336, 164–171 (2005). ArticleCAS Google Scholar
Bennett, B.D., Yuan, J., Kimball, E.H. & Rabinowitz, J.D. Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat. Protoc.3, 1299–1311 (2008). ArticleCAS Google Scholar
Ikeda, T.P., Shauger, A.E. & Kustu, S. Salmonella typhimurium apparently perceives external nitrogen limitation as internal glutamine limitation. J. Mol. Biol.259, 589–607 (1996). ArticleCAS Google Scholar
Schaub, J., Schiesling, C., Reuss, M. & Dauner, M. Integrated sampling procedure for metabolome analysis. Biotechnol. Prog.22, 1434–1442 (2006). ArticleCAS Google Scholar
Villas-Boas, S.G., Hojer-Pedersen, J., Akesson, M., Smedsgaard, J. & Nielsen, J. Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast22, 1155–1169 (2005). ArticleCAS Google Scholar
Visser, D. et al. Rapid sampling for analysis of in vivo kinetics using the BioScope: a system for continuous-pulse experiments. Biotechnol. Bioeng.79, 674–681 (2002). ArticleCAS Google Scholar
Rabinowitz, J.D. Cellular metabolomics of Escherichia coli. Expert Rev. Proteomics4, 187–198 (2007). ArticleCAS Google Scholar
Rabinowitz, J.D. & Kimball, E. Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal. Chem.79, 6167–6173 (2007). ArticleCAS Google Scholar
Shalwitz, R.A., Beth, T.J., MacLeod, A.M., Tucker, S.J. & Rolison, G.G. Use of 2H2O to study labeling in plasma glucose and hepatic glycogen during a hyperglycemic clamp. Am. J. Physiol.266, E433–E437 (1994). PubMed Google Scholar
Baranyai, J.M. & Blum, J.J. Quantitative-analysis of intermediary metabolism in rat hepatocytes incubated in the presence and absence of ethanol with a substrate mixture including ketoleucine. Biochem. J.258, 121–140 (1989). ArticleCAS Google Scholar
Wright, B.E. & Reimers, J.M. Steady-state models of glucose-perturbed Dictyostelium discoideum. J. Biol. Chem.263, 14906–14912 (1988). CASPubMed Google Scholar
Rabkin, M. & Blum, J.J. Quantitative analysis of intermediary metabolism in hepatocytes incubated in the presence and absence of glucagon with a substrate mixture containing glucose, ribose, fructose, alanine and acetate. Biochem. J.225, 761–786 (1985). ArticleCAS Google Scholar
Crawford, J.M. & Blum, J.J. Quantitative-analysis of flux along the gluconeogenic, glycolytic and pentose-phosphate pathways under reducing conditions in hepatocytes isolated from fed rats. Biochem. J.212, 595–598 (1983). Article Google Scholar
Kelly, P.J., Kelleher, J.K. & Wright, B.E. Tricarboxylic-acid cycle in dictyostelium-discoideum—metabolite concentrations, oxygen-uptake and C-14-labeled amino-acid labeling patterns. Biochem. J.184, 581–588 (1979). ArticleCAS Google Scholar
Katz, J., Wals, P.A. & Rognstad, R. Glucose phosphorylation, glucose-6-phosphatase, and recycling in rat hepatocytes. J. Biol. Chem.253, 4530–4536 (1978). CASPubMed Google Scholar
Edwards, J.S., Covert, M. & Palsson, B. Metabolic modelling of microbes: the flux-balance approach. Environ. Microbiol.4, 133–140 (2002). Article Google Scholar
Sauer, U. Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol.2, 62 (2006). Article Google Scholar
Edwards, J.S., Ibarra, R.U. & Palsson, B.O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol.19, 125–130 (2001). ArticleCAS Google Scholar
Ibarra, R.U., Edwards, J.S. & Palsson, B.O. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature420, 186–189 (2002). ArticleCAS Google Scholar
Fong, S.S., Marciniak, J.Y. & Palsson, B.O. Description and interpretation of adaptive evolution of Escherichia coli K-12 MG1655 by using a genome-scale in silico metabolic model. J. Bacteriol.185, 6400–6408 (2003). ArticleCAS Google Scholar
Segre, D., Vitkup, D. & Church, G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA99, 15112–15117 (2002). ArticleCAS Google Scholar
Duarte, N.C., Herrgard, M.J. & Palsson, B.O. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res.14, 1298–1309 (2004). ArticleCAS Google Scholar
Duarte, N.C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. USA104, 1777–1782 (2007). ArticleCAS Google Scholar
Fischer, E. & Sauer, U. Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat. Genet.37, 636–640 (2005). ArticleCAS Google Scholar
Fischer, E. & Sauer, U. Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur. J. Biochem.270, 880–891 (2003). ArticleCAS Google Scholar
van Winden, W.A. et al. Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of (13)C-labeled primary metabolites. FEMS Yeast Res.5, 559–568 (2005). ArticleCAS Google Scholar
Schmidt, K., Carlsen, M., Nielsen, J. & Villadsen, J. Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol. Bioeng.55, 831–840 (1997). ArticleCAS Google Scholar
Schmidt, K. et al. Quantification of intracellular metabolic fluxes from fractional enrichment and 13C-13C coupling constraints on the isotopomer distribution in labeled biomass components. Metab. Eng.1, 166–179 (1999). ArticleCAS Google Scholar
Kimball, E. & Rabinowitz, J.D. Identifying decomposition products in extracts of cellular metabolites. Anal. Biochem.358, 273–280 (2006). ArticleCAS Google Scholar
Bajad, S.U. et al. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J. Chromatogr. A1125, 76–88 (2006). ArticleCAS Google Scholar
Luo, B., Groenke, K., Takors, R., Wandrey, C. & Oldiges, M. Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J. Chromatogr. A1147, 153–164 (2007). ArticleCAS Google Scholar
Werf, M.J., Overkamp, K.M., Muilwijk, B., Coulier, L. & Hankemeier, T. Microbial metabolomics: toward a platform with full metabolome coverage. Anal. Biochem.370, 17–25 (2007). Article Google Scholar
Lu, W. & Bennett, B.D. Analytical strategies for LC-MS-based targeted metabolomics. J. Chromatogr. B doi:10.1016/j.jchromb2008.04.031.
Mashego, M.R. et al. MIRACLE: mass isotopomer ratio analysis of U-13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol. Bioeng.85, 620–628 (2004). ArticleCAS Google Scholar
Tempest, D.W., Meers, J.L. & Brown, C.M. Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochem. J.117, 405–407 (1970). ArticleCAS Google Scholar
Reitzer, L. Nitrogen assimilation and global regulation in Escherichia coli. Annu. Rev. Microbiol.57, 155–176 (2003). ArticleCAS Google Scholar