Stepwise differentiation of pluripotent stem cells into retinal cells (original) (raw)
Evans, M.J. & Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature292, 154–156 (1981). ArticleCAS Google Scholar
Zhao, C., Deng, W. & Gage, F.H. Mechanisms and functional implications of adult neurogenesis. Cell132, 645–660 (2008). ArticleCAS Google Scholar
Ooto, S. et al. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc. Natl Acad. Sci. USA101, 13654–13659 (2004). ArticleCAS Google Scholar
Osakada, F. et al. Wnt signaling promotes regeneration in the retina of adult mammals. J. Neurosci.27, 4210–4219 (2007). ArticleCAS Google Scholar
Lindvall, O. & Kokaia, Z. Stem cells for the treatment of neurological disorders. Nature441, 1094–1096 (2006). ArticleCAS Google Scholar
Rattner, A. & Nathans, J. Macular degeneration: recent advances and therapeutic opportunities. Nat. Rev. Neurosci.7, 860–872 (2006). ArticleCAS Google Scholar
Haruta, M. et al. In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest. Ophthalmol. Vis. Sci.45, 1020–1025 (2004). Article Google Scholar
Lund, R.D. et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells8, 189–199 (2006). ArticleCAS Google Scholar
MacLaren, R.E. et al. Retinal repair by transplantation of photoreceptor precursors. Nature444, 203–207 (2006). ArticleCAS Google Scholar
Tropepe, V. et al. Retinal stem cells in the adult mammalian eye. Science287, 2032–2036 (2000). ArticleCAS Google Scholar
Haruta, M. et al. Induction of photoreceptor-specific phenotypes in adult mammalian iris tissue. Nat. Neurosci.4, 1163–1164 (2001). ArticleCAS Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). ArticleCAS Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007). ArticleCAS Google Scholar
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007). ArticleCAS Google Scholar
Lamba, D., Karl, M. & Reh, T. Neural regeneration and cell replacement: a view from the eye. Cell Stem Cell2, 538–549 (2008). ArticleCAS Google Scholar
Lamba, D.A., Gust, J. & Reh, T.A. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in crx-deficient mice. Cell Stem Cell4, 73–79 (2009). ArticleCAS Google Scholar
Osakada, F. & Takahashi, M. Drug development targeting the glycogen synthase kinase-3beta (GSK-3beta)-mediated signal transduction pathway: targeting the Wnt Pathway and transplantation therapy as strategies for retinal repair. J. Pharmacol. Sci.109, 168–173 (2009). ArticleCAS Google Scholar
Wichterle, H., Lieberam, I., Porter, J.A. & Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell110, 385–397 (2002). ArticleCAS Google Scholar
Mizuseki, K. et al. Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proc. Natl Acad. Sci. USA100, 5828–5833 (2003). ArticleCAS Google Scholar
Watanabe, K. et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci.8, 288–296 (2005). ArticleCAS Google Scholar
Adler, R. & Canto-Soler, M.V. Molecular mechanisms of optic vesicle development: complexities, ambiguities and controversies. Dev. Biol.305, 1–13 (2007). ArticleCAS Google Scholar
Osakada, F. & Takahashi, M. Retinal regeneration by somatic stem cells. Exp. Med.24, 256–262 (2006). CAS Google Scholar
Marquardt, T. & Gruss, P. Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci.25, 32–38 (2002). ArticleCAS Google Scholar
Ikeda, H. et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc. Natl Acad. Sci. USA102, 11331–11336 (2005). ArticleCAS Google Scholar
Osakada, F. et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat. Biotechnol.26, 215–224 (2008). ArticleCAS Google Scholar
Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science282, 1145–1147 (1998). ArticleCAS Google Scholar
Bain, G., Kitchens, D., Yao, M., Huettner, J.E. & Gottlieb, D.I. Embryonic stem cells express neuronal properties in vitro . Dev. Biol.168, 342–357 (1995). ArticleCAS Google Scholar
Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron28, 31–40 (2000). ArticleCAS Google Scholar
Lee, S.H., Lumelsky, N., Studer, L., Auerbach, J.M. & McKay, R.D. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol.18, 675–679 (2000). ArticleCAS Google Scholar
Ying, Q.L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol.21, 183–186 (2003). ArticleCAS Google Scholar
Barberi, T. et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. Biotechnol.21, 1200–1207 (2003). ArticleCAS Google Scholar
Ueno, M. et al. Neural conversion of ES cells by an inductive activity on human amniotic membrane matrix. Proc. Natl Acad. Sci. USA103, 9554–9559 (2006). ArticleCAS Google Scholar
Kawasaki, H. et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc. Natl Acad. Sci. USA99, 1580–1585 (2002). ArticleCAS Google Scholar
Klimanskaya, I. et al. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells6, 217–245 (2004). ArticleCAS Google Scholar
Zhao, X., Liu, J. & Ahmad, I. Differentiation of embryonic stem cells into retinal neurons. Biochem. Biophys. Res. Commun.297, 177–184 (2002). ArticleCAS Google Scholar
Hirano, M. et al. Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells. Dev. Dyn.228, 664–671 (2003). Article Google Scholar
Lamba, D.A., Karl, M.O., Ware, C.B. & Reh, T.A. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc. Natl Acad. Sci. USA103, 12769–12774 (2006). ArticleCAS Google Scholar
Pouton, C.W. & Haynes, J.M. Embryonic stem cells as a source of models for drug discovery. Nat. Rev. Drug Discov.8, 605–616 (2007). Article Google Scholar
Nishikawa, S., Goldstein, R.A. & Nierras, C.R. The promise of human induced pluripotent stem cells for research and therapy. Nat. Rev. Mol. Cell Biol.9, 725–729 (2008). ArticleCAS Google Scholar
Park, I.H. et al. Disease-specific induced pluripotent stem cells. Cell134, 877–886 (2008). ArticleCAS Google Scholar
Ebert, A.D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature (2008).
Watanabe, T. & Raff, M.C. Rod photoreceptor development in vitro: intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Neuron4, 461–467 (1990). ArticleCAS Google Scholar
Levine, E.M., Fuhrmann, S. & Reh, T.A. Soluble factors and the development of rod photoreceptors. Cell. Mol. Life Sci.57, 224–234 (2000). ArticleCAS Google Scholar
Suemori, H. et al. Efficient establishment of human embryonic stem cell lines and long-term maintenance with stable karyotype by enzymatic bulk passage. Biochem. Biophys. Res. Commun.345, 926–932 (2006). ArticleCAS Google Scholar
Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol.25, 681–686 (2007). ArticleCAS Google Scholar
Wataya, T. et al. Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation. Proc. Natl. Acad. Sci. USA105, 11796–11801 (2008). ArticleCAS Google Scholar
Fukuda, H. et al. Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem Cells24, 763–771 (2006). ArticleCAS Google Scholar