Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice (original) (raw)
Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell–derived inducing activity. Neuron28, 31–40 (2000). ArticleCASPubMed Google Scholar
Lee, S.-H., Lumelsky, N., Studer, L., Auerbach, J.M. & McKay, R.D.G. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol.18, 675–679 (2000). ArticleCASPubMed Google Scholar
Tropepe, V. et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron30, 65–78 (2001). ArticleCASPubMed Google Scholar
Ying, Q.L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol.21, 183–186 (2003). ArticleCASPubMed Google Scholar
Okabe, S., Forsberg-Nilsson, K., Spiro, A.C., Segal, M. & McKay, R.D.G. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev.59, 89–102 (1996). ArticleCASPubMed Google Scholar
Brustle, O. et al. Embryonic stem cell–derived glial precursors: a source of myelinating transplants. Science285, 754–756 (1999). ArticleCASPubMed Google Scholar
Wakayama, T. et al. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science292, 740–743 (2001). ArticleCASPubMed Google Scholar
Kim, J.H. et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature418, 50–56 (2002). ArticleCASPubMed Google Scholar
Itoh, K. et al. Reproducible establishment of hematopoietic supportive stromal cell-lines from murine bone-marrow. Exp. Hematol.17, 145–153 (1989). CASPubMed Google Scholar
Collins, L.S. & Dorshkind, K. A stromal cell-line from myeloid long-term bone-marrow cultures can support myelopoiesis and B-lymphopoiesis. J. Immunol.138, 1082–1087 (1987). CASPubMed Google Scholar
Lendahl, U., Zimmerman, L.B. & McKay, R.D. CNS stem cells express a new class of intermediate filament protein. Cell60, 585–595 (1990). ArticleCASPubMed Google Scholar
Sakakibara, S. et al. Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev. Biol.176, 230–242 (1996). ArticleCASPubMed Google Scholar
Johe, K.K., Hazel, T.G., Müller, T., Dugich-Djordjevic, M.M. & McKay, R.D.G. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev.10, 3129–3140 (1996). ArticleCASPubMed Google Scholar
Studer, L., Tabar, V. & McKay, R.D. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci.1, 290–295 (1998). ArticleCASPubMed Google Scholar
Yan, J., Studer, L. & McKay, R.D.G. Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor–expanded mesencephalic precursors. J. Neurochem.76, 307–311 (2001). ArticleCASPubMed Google Scholar
Tao, W. & Lai, E. Telencephalon-restricted expression of BF-1, a new member of the HNF-3/fork head gene family, in the developing rat brain. Neuron8, 957–966 (1992). ArticleCASPubMed Google Scholar
Kawasaki, H. et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell–derived inducing activity. Proc. Natl. Acad. Sci. USA99, 1580–1585 (2002). ArticleCASPubMedPubMed Central Google Scholar
Cibelli, J.B. et al. Parthenogenetic stem cells in nonhuman primates. Science295, 819 (2002). ArticleCASPubMed Google Scholar
Wichterle, H., Lieberam, I., Porter, J.A. & Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell110, 385–397 (2002). ArticleCASPubMed Google Scholar
Munoz-Sanjuan, I. & Brivanlou, A.H. Neural induction, the default model and embryonic stem cells. Nat. Rev. Neurosci.3, 271–280 (2002). ArticleCASPubMed Google Scholar
Lumsden, A. & Krumlauf, R. Patterning the vertebrate neuraxis (Review). Science274, 1109–1115 (1996). ArticleCASPubMed Google Scholar
Wilson, S.W. & Rubenstein, J.L.R. Induction and dorsoventral patterning of the telencephalon. Neuron28, 641–651 (2000). ArticleCASPubMed Google Scholar
Sanchez-Pernaute, R., Studer, L., Bankiewicz, K.S., Major, E.O. & McKay, R.D. In vitro generation and transplantation of precursor-derived human dopamine neurons. J. Neurosci. Res.65, 284–288 (2001). ArticleCASPubMed Google Scholar
Ling, Z.D., Potter, E.D., Lipton, J.W. & Carvey, P.M. Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp. Neurol.149, 411–423 (1998). ArticleCASPubMed Google Scholar
Wagner, J. et al. Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nat. Biotechnol.17, 653–659 (1999). ArticleCASPubMed Google Scholar
Bjorklund, L.M. et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl. Acad. Sci. USA99, 2344–2349 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zawada, W.M. et al. Somatic cell cloned transgenic bovine neurons for transplantation in parkinsonian rats. Nat. Med.4, 569–574 (1998). ArticleCASPubMed Google Scholar
Xuan, S. et al. Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron14, 1141–1152 (1995). ArticleCASPubMed Google Scholar
Keller, G.M. In-vitro differentiation of embryonic stem-cells. Curr. Opin. Cell Biol.7, 862–869 (1995). ArticleCASPubMed Google Scholar
Xu, M.J. et al. Stimulation of mouse and human primitive hematopoiesis by murine embryonic aorta-gonad-mesonephros-derived stromal cell lines. Blood92, 2032–2040 (1998). CASPubMed Google Scholar
Studer, L. et al. Noninvasive dopamine determination by reversed phase HPLC in the medium of free-floating roller tube cultures of rat fetal ventral mesencephalon: a tool to assess dopaminergic tissue prior to grafting. Brain Res. Bull.41, 143–150 (1996). ArticleCASPubMed Google Scholar
Battisti, J.J., Uretsky, N.J. & Wallace, L.J. Sensitization of apomorphine-induced stereotyped behavior in mice is context dependent. Psychopharmacology (Berl.)146, 42–48 (1999). ArticleCAS Google Scholar
Winkler, J.D. & Weiss, B. Reversal of supersensitive apomorphine-induced rotational behavior in mice by continuous exposure to apomorphine. J. Pharmacol. Exp. Ther.238, 242–247 (1996). Google Scholar
Barneoud, P. et al. Effects of complete and partial lesions of the dopaminergic mesotelencephalic system on skilled forelimb use in the rat. Neuroscience67, 837–848 (1995). ArticleCASPubMed Google Scholar
Gundersen, H.J.G. et al. Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS96, 379–394 (1988). ArticleCASPubMed Google Scholar