Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst (original) (raw)

References

  1. Fiehn, O. Metabolomics—the link between genotypes and phenotypes. Plant. Mol. Biol. 48, 155–171 (2002).
    Article CAS Google Scholar
  2. Wishart, D.S. Quantitative metabolomics using NMR. Trends Analyt. Chem. 27, 228–237 (2008).
    Article CAS Google Scholar
  3. Dunn, W.B. & Ellis, D.I. Metabolomics: current analytical platforms and methodologies. Trends Analyt. Chem. 24, 285–294 (2005).
    Article CAS Google Scholar
  4. Wishart, D.S. et al. HMDB: the human metabolome database. Nucleic Acids Res. 35, D521–D526 (2007).
    Article CAS Google Scholar
  5. Lundberg, P. et al. MDL—The Magnetic Resonance Metabolomics Database http://mdl.imv.liu.se (European Society for Magnetic Resonance in Medicine and Biology, ESMRMB, 2005).
  6. Smith, C.A. et al. METLIN—a metabolite mass spectral database. Ther. Drug Monit. 27, 747–751 (2005).
    Article CAS Google Scholar
  7. Weljie, A.M., Newton, J., Mercier, P., Carlson, E. & Slupsky, C.M. Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal. Chem. 78, 4430–4442 (2006).
    Article CAS Google Scholar
  8. Smith, C.A., Want, E.J., O′Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).
    Article CAS Google Scholar
  9. Zhao, Q., Stoyanova, R., Du, S., Sajda, P. & Brown, T.R. HiRes—a tool for comprehensive assessment and interpretation of metabolomic data. Bioinformatics 22, 2562–2564 (2006).
    Article CAS Google Scholar
  10. Xia, J., Bjorndahl, T.C., Tang, P. & Wishart, D.S. MetaboMiner—semi-automated identification of metabolites from 2D NMR spectra of complex biofluids. BMC Bioinformatics 9, 507 (2008).
    Article Google Scholar
  11. Lommen, A. MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem. 81, 3079–3086 (2009).
    Article CAS Google Scholar
  12. Katajamaa, M., Miettinen, J. & Oresic, M. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22, 634–636 (2006).
    Article CAS Google Scholar
  13. Wishart, D.S. Current Progress in computational metabolomics. Brief. Bioinform. 8, 279–293 (2007).
    Article CAS Google Scholar
  14. Cui, Q. et al. Metabolite identification via the Madison Metabolomics Consortium Database. Nat. Biotechnol. 26, 162–164 (2008).
    Article CAS Google Scholar
  15. Wishart, D.S. et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 37, D603–D610 (2009).
    Article CAS Google Scholar
  16. Henderson, J.P. et al. Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathog. 5, e1000305 (2009).
    Article Google Scholar
  17. Altmaier, E. et al. Variation in the human lipidome associated with coffee consumption as revealed by quantitative targeted metabolomics. Mol. Nutr. Food Res. 53, 1357–1365 (2009).
    Article CAS Google Scholar
  18. Ewald, J.C., Heux, S. & Zamboni, N. High-throughput quantitative metabolomics: workflow for cultivation, quenching, and analysis of yeast in a multiwell format. Anal. Chem. 81, 3623–3629 (2009).
    Article CAS Google Scholar
  19. Zulak, K.G., Weljie, A.M., Vogel, H.J. & Facchini, P.J. Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures. BMC Plant Biol. 8, 5 (2008).
    Article Google Scholar
  20. Xia, J., Psychogios, N., Young, N. & Wishart, D.S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 37, W652–W660 (2009).
    Article CAS Google Scholar
  21. Xia, J. & Wishart, D.S. MSEA: A web-based tool to identify biologically meaningful patterns in quantitative metabolomics data. Nucleic Acids Res. 38, W71–W77 (2010).
    Article CAS Google Scholar
  22. Xia, J. & Wishart, D.S. MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 26, 2342–2344 (2010).
    Article CAS Google Scholar
  23. Neuweger, H. et al. MeltDB: a software platform for the analysis and integration of metabolomics experiment data. Bioinformatics 24, 2726–2732 (2008).
    Article CAS Google Scholar
  24. Kastenmuller, G., Romisch-Margl, W., Wagele, B., Altmaier, E. & Suhre, K. metaP-server: a web-based metabolomics data analysis tool. J. Biomed. Biotechnol. 2011, (2010).
  25. Pluskal, T., Castillo, S., Villar-Briones, A. & Oresic, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395 (2010).
    Article Google Scholar
  26. Broeckling, C.D., Reddy, I.R., Duran, A.L., Zhao, X. & Sumner, L.W. MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. Anal. Chem. 78, 4334–4341 (2006).
    Article CAS Google Scholar
  27. Duran, A.L., Yang, J., Wang, L.J. & Sumner, L.W. Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19, 2283–2293 (2003).
    Article CAS Google Scholar
  28. Luedemann, A., Strassburg, K., Erban, A. & Kopka, J. TagFinder for the quantitative analysis of gas chromatography—mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics 24, 732–737 (2008).
    Article CAS Google Scholar
  29. Wohlgemuth, G., Haldiya, P.K., Willighagen, E., Kind, T. & Fiehn, O. The Chemical Translation Service—a web-based tool to improve standardization of metabolomic reports. Bioinformatics 26, 2647–2648 (2010).
    Article CAS Google Scholar
  30. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–21 (2001).
    Article CAS Google Scholar
  31. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
    Article CAS Google Scholar
  32. Salomonis, N. et al. GenMAPP 2: new features and resources for pathway analysis. BMC Bioinformatics 8, 217 (2007).
    Article Google Scholar
  33. Goffard, N., Frickey, T. & Weiller, G. PathExpress update: the enzyme neighbourhood method of associating gene-expression data with metabolic pathways. Nucleic Acids Res. 37, W335–W339 (2009).
    Article CAS Google Scholar
  34. Hu, Z. et al. VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res. 37, W115–W121 (2009).
    Article CAS Google Scholar
  35. Goffard, N. & Weiller, G. PathExpress: a web-based tool to identify relevant pathways in gene expression data. Nucleic Acids Res. 35, W176–W181 (2007).
    Article Google Scholar
  36. Bijlsma, S. et al. Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal. Chem. 78, 567–574 (2006).
    Article CAS Google Scholar
  37. Frolkis, A. et al. SMPDB: the small molecule pathway database. Nucleic Acids Res. 38, D480–D487 (2010).
    Article CAS Google Scholar
  38. Efron, B., Tibshirani, R., Storey, J.D. & Tusher, V. Empirical Bayes analysis of a microarray experiment. J. Am. Stat. Assoc. 96, 1151–1160 (2001).
    Article Google Scholar
  39. Trygg, J. & Wold, S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 16, 119–128 (2002).
    Article CAS Google Scholar
  40. Wang, T. et al. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis. BMC Bioinformatics 10, 83 (2009).
    Article Google Scholar
  41. Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods—a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–1167 (2007).
    Article CAS Google Scholar
  42. Dieterle, F., Ross, A., Schlotterbeck, G. & Senn, H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem. 78, 4281–4290 (2006).
    Article CAS Google Scholar
  43. van den Berg, R.A., Hoefsloot, H.C., Westerhuis, J.A., Smilde, A.K. & van der Werf, M.J. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7, 142 (2006).
    Article Google Scholar
  44. Pavlidis, P. Using ANOVA for gene selection from microarray studies of the nervous system. Methods 31, 282–289 (2003).
    Article CAS Google Scholar
  45. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    Article Google Scholar
  46. Westerhuis, C.A. et al. Assessment of PLSDA cross validation. Metabolomics 4, 81–89 (2007).
    Article Google Scholar
  47. Goeman, J.J., van de Geer, S.A., de Kort, F. & van Houwelingen, H.C. A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 20, 93–99 (2004).
    Article CAS Google Scholar
  48. Hummel, M., Meister, R. & Mansmann, U. GlobalANCOVA: exploration and assessment of gene group effects. Bioinformatics 24, 78–85 (2008).
    Article CAS Google Scholar
  49. Aittokallio, T. & Schwikowski, B. Graph-based methods for analysing networks in cell biology. Brief Bioinform. 7, 243–255 (2006).
    Article CAS Google Scholar

Download references