Use of the mouse aortic ring assay to study angiogenesis (original) (raw)
Hodivala-Dilke, K.M., Reynolds, A.R. & Reynolds, L.E. Integrins in angiogenesis: multitalented molecules in a balancing act. Cell Tissue Res.314, 131–144 (2003). ArticleCASPubMed Google Scholar
Ferrara, N. & Kerbel, R.S. Angiogenesis as a therapeutic target. Nature438, 967–974 (2005). CASPubMed Google Scholar
Hodivala-Dilke, K.M. αvβ3 integrin and angiogenesis: a moody integrin in a changing environment. Curr. Opin. Cell Biol.20, 514–519 (2008). ArticleCASPubMed Google Scholar
Nicosia, R.F. & Ottinetti, A. Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab. Invest.63, 115–122 (1990). CASPubMed Google Scholar
Reynolds, L.E. et al. Tumour angiogenesis is reduced in the Tc1 mouse model of Down's syndrome. Nature465, 813–817 (2010). Erratum in Nature466, 398 (15 July 2010). ArticleCASPubMedPubMed Central Google Scholar
Reynolds, A.R. et al. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat. Med.4, 392–400 (2009). Article Google Scholar
Reynolds, L.E. et al. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat. Med.8, 27–34 (2002). ArticleCASPubMed Google Scholar
Ebos, J.M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell15, 232–239 (2009). ArticleCASPubMedPubMed Central Google Scholar
Falcon, B.L. et al. Increased vascular delivery and efficacy of chemotherapy after inhibition of platelet-derived growth factor-B. Am. J. Pathol.178, 2920–2930 (2011). ArticleCASPubMedPubMed Central Google Scholar
Oehler, M.K., Hague, S., Rees, M.C. & Bicknell, R. Adrenomedullin promotes formation of xenografted endometrial tumors by stimulation of autocrine growth and angiogenesis. Oncogene21, 2815–2821 (2002). ArticleCASPubMed Google Scholar
da Silva, R.G. et al. Endothelial α3β1-integrin represses pathological angiogenesis and sustains endothelial-VEGF. Am. J. Path.177, 1534–1548 (2010). ArticleCASPubMedPubMed Central Google Scholar
Seo, D.W. et al. TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell114, 171–180 (2003). ArticleCASPubMed Google Scholar
Ribatti, D. Chick embryo chorioallantoic membrane as a useful tool to study angiogenesis. Int. Rev. Cell Mol. Biol.270, 181–224 (2008). ArticleCASPubMed Google Scholar
Gale, N.W. et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev. Cell3, 411–423 (2002). ArticleCASPubMed Google Scholar
Silvestre, J.S. et al. Antiangiogenic effect of interleukin-10 in ischemia-induced angiogenesis in mice hindlimb. Circ. Res.87, 448–452 (2000). ArticleCASPubMed Google Scholar
Pitulescu, M.E., Schmidt, I., Benedito, R. & Adams, R.H. Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice. Nat. Protoc.5, 1518–1534 (2010). ArticleCASPubMed Google Scholar
Lawson, N.D. & Weinstein, B.M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol.248, 307–318 (2002). ArticleCASPubMed Google Scholar
Rouhi, P. et al. Hypoxia-induced metastasis model in embryonic zebrafish. Nat. Protoc.5, 1911–1918 (2010). ArticleCASPubMed Google Scholar
Zou, L. et al. Rapid xenograft tumor progression in beta-arrestin1 transgenic mice due to enhanced tumor angiogenesis. FASEB J.22, 355–364 (2007). ArticleCASPubMed Google Scholar
Koblizek, T.I., Weiss, C., Yancopoulos, G.D., Deutsch, U. & Risau, W. Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr. Biol.8, 529–532 (1998). ArticleCASPubMed Google Scholar
Mavria, G. et al. ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell9, 33–44 (2006). ArticleCASPubMed Google Scholar
Nicosia, R.F., Lin, Y.J., Hazelton, D. & Qian, X. Endogenous regulation of angiogenesis in the rat aorta model—role of vascular endothelial growth factor. Am. J. Path.151, 1379–1386 (1997). CASPubMedPubMed Central Google Scholar
Aplin, A.C., Fogel, E., Zorzi, P. & Nicosia, R.F. The aortic ring model of angiogenesis. Methods Enzymol. Chapter 7 443, 119–136 (2008). ArticleCASPubMed Google Scholar
Nicosia, R.F. The aortic ring model of angiogenesis: a quarter century of search and discovery. J. Cell Mol. Med.13, 4113–4136 (2009). ArticleCASPubMedPubMed Central Google Scholar
Scott, A.N. et al. Farnesyltransferase inhibitors target multiple endothelial cell functions in angiogenesis. Angiogenesis11, 337–346 (2008). ArticleCASPubMed Google Scholar
Piqueras, L. et al. Activation of PPARbeta/delta induces endothelial cell proliferation and angiogenesis. Arterioscler. Thromb. Vasc. Biol.27, 63–69 (2007). ArticleCASPubMed Google Scholar
Kruger, E.A. et al. Endostatin inhibits microvessel formation in the ex vivo rat aortic ring angiogenesis assay. Biochem. Biophys. Res. Comm.268, 183–191 (2000). ArticleCASPubMed Google Scholar
Salcedo, R. et al. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood96, 34–40 (2000). CASPubMed Google Scholar
Sounni, N.E. et al. MT1-MMP expression promotes tumor growth and angiogenesis through an upregulation of vascular endothelial growth factor expression. FASEB J.16, 555–564 (2002). ArticleCASPubMed Google Scholar
Pan, Q. et al. Deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res.62, 4854 (2002). CASPubMed Google Scholar
Stiffey-Wilusz, J., Boice, J.A., Ronan, J., Fletcher, A.M. & Anderson, M.S. An ex vivo angiogenesis assay utilizing commercial porcine carotidartery: modification of the rat aortic ring assay. Angiogenesis4, 3–9 (2001). ArticleCASPubMed Google Scholar
Masson, V. et al. Mouse aortic ring assay: a new approach of the molecular genetics of angiogenesis. Biol. Proced. Online4, 24–31 (2002). ArticleCASPubMed Central Google Scholar
Devy, L. et al. The pro- or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. FASEB J.16, 147–154 (2002). ArticleCASPubMed Google Scholar
Gelati, M., Aplin, A.C., Fogel, E., Smith, K.D. & Nicosia, R.F. The angiogenic response of the aorta to injury and inflammatory cytokines requires macrophages. J. Immunol.181, 5711–5719 (2008). ArticleCASPubMed Google Scholar
Robinson, S.D. et al. Alphav beta3 integrin limits the contribution of neuropilin-1 to vascular endothelial growth factor-induced angiogenesis. J. Biol. Chem.284, 33966–33968 (2009). ArticleCASPubMedPubMed Central Google Scholar
D'Amico, G. et al. Endothelial-Rac1 is not required for tumor angiogenesis unless αvβ3-integrin is absent. PLoS ONE5, e9766 (2010). ArticlePubMedPubMed Central Google Scholar
Reynolds, A.R. et al. Enhanced VEGF receptor 2 mediated responses in β3-integrin deficient endothelial cells in vivo and in vitro. Cancer Res.64, 8643–8650 (2004). ArticleCASPubMed Google Scholar
Silva, R., D'Amico, G., Hodivala-Dilke, K.M. & Reynolds, L.E. Integrins: the keys to unlocking angiogenesis. Arterioscler. Thromb. Vasc. Biol.28, 1703–1713 (2008). ArticleCASPubMed Google Scholar
Germain, M.A. et al. Genetic ablation of the alpha 6-integrin subunit in Tie1Cre mice enhances tumour angiogenesis. J. Pathol.220, 370–381 (2010). CASPubMed Google Scholar
Claxton, S. et al. Efficient, inducible Cre-recombinase activation in vascular endothelium. Genesis46, 74–80 (2008). ArticleCASPubMed Google Scholar
Zhu, W.H., Iurlaro, M., MacIntyre, A., Fogel, E. & Nicosia, R.F. The mouse aorta model: influence of genetic background and aging on bFGF- and VEGF-induced angiogenic sprouting. Angiogenesis6, 193–199 (2003). ArticleCASPubMed Google Scholar
Alian, A., Eldor, A., Falk, H. & Panet, A. Viral mediated gene transfer to sprouting blood vessels during angiogenesis. J. Virol. Meth.105, 1–11 (2002). ArticleCAS Google Scholar
Hajitou, A . et al. The antitumoral effect of endostatin and angiostatin is associated with a down-regulation of vascular endothelial growth factor expression in tumor cells. FASEB J.16, 1802–1804 (2002). ArticleCASPubMed Google Scholar
Zhu, W.H. & Nicosia, R.F. The thin prep rat aortic ring assay: a modified method for the characterization of angiogenesis in whole mounts. Angiogenesis5, 81–86 (2002). ArticleCASPubMed Google Scholar
Bruyère, F. et al. Modeling lymphangiogenesis in a three-dimensional culture system. Nat. Protoc.5, 431–437 (2008). Google Scholar
Krilleke, D. et al. Molecular mapping and functional characterization of the VEGF164 heparin-binding domain. J. Biol. Chem.282, 28045–28056 (2007). ArticleCASPubMed Google Scholar
Blatt, R.J., Clark, A.N., Courtney, J., Tully, C. & Tucker, A.L. Automated quantitative analysis of angiogenesis in the rat aorta model using Image-Pro Plus 4.1. Comput. Meth. Prog. Bio.75, 75–79 (2004). Article Google Scholar