Sengupta, P. et al. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat. Methods8, 969–975 (2011). ArticleCASPubMedPubMed Central Google Scholar
Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science339, 452–456 (2012). ArticlePubMedCAS Google Scholar
Honigmann, A. et al. Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment. Nat. Struct. Mol. Biol.20, 679–686 (2013). ArticleCASPubMedPubMed Central Google Scholar
Li, D. et al. ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science349, aab3500 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Galiani, S. et al. Super-resolution microscopy reveals compartmentalization of peroxisomal membrane proteins. J. Biol. Chem.291, 16948–16962 (2016). ArticleCASPubMedPubMed Central Google Scholar
Hell, S.W. et al. The 2015 super-resolution microscopy roadmap. J. Phys. D Appl. Phys.48, 443001 (2015). ArticleCAS Google Scholar
Sharonov, A. & Hochstrasser, R.M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl. Acad. Sci. USA103, 18911–18916 (2006). ArticleCASPubMedPubMed Central Google Scholar
Giannone, G. et al. Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys. J.99, 1303–1310 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett.10, 4756–4761 (2010). ArticleCASPubMed Google Scholar
Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods11, 313–318 (2014). ArticleCASPubMedPubMed Central Google Scholar
Dai, M., Jungmann, R. & Yin, P. Optical imaging of individual biomolecules in densely packed clusters. Nat. Nanotechnol.11, 798–807 (2016). ArticleCASPubMedPubMed Central Google Scholar
Schlichthaerle, T., Strauss, M.T., Schueder, F., Woehrstein, J.B. & Jungmann, R. DNA nanotechnology and fluorescence applications. Curr. Opin. Biotechnol.39, 41–47 (2016). ArticleCASPubMed Google Scholar
Agasti, S. et al. DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging. Chem. Sci. (2017) http://dx.doi.org/10.1039/c6sc05420j.
Rasnik, I., McKinney, S.A. & Ha, T. Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods3, 891–893 (2006). ArticleCASPubMed Google Scholar
Aitken, C.E., Marshall, R.A. & Puglisi, J.D. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys. J.94, 1826–1835 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ha, T. & Tinnefeld, P. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu. Rev. Phys. Chem.63, 595–617 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ries, J., Kaplan, C., Platonova, E., Eghlidi, H. & Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods9, 582–584 (2012). ArticleCASPubMed Google Scholar
Opazo, F. et al. Aptamers as potential tools for super-resolution microscopy. Nat. Methods9, 938–939 (2012). ArticleCASPubMed Google Scholar
Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods5, 159–161 (2008). ArticleCASPubMed Google Scholar
Benson, E. et al. DNA rendering of polyhedral meshes at the nanoscale. Nature523, 441–444 (2015). ArticleCASPubMed Google Scholar
Kim, D.-N., Kilchherr, F., Dietz, H. & Bathe, M. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res.40, 2862–2868 (2012). ArticleCASPubMed Google Scholar
Martin, T.G. & Dietz, H. Magnesium-free self-assembly of multi-layer DNA objects. Nat. Commun.3, 1103 (2012). ArticlePubMedCAS Google Scholar
Sobczak, J.-P.J., Martin, T.G., Gerling, T. & Dietz, H. Rapid folding of DNA into nanoscale shapes at constant temperature. Science338, 1458–1461 (2012). ArticleCASPubMed Google Scholar
Bellot, G., Gaëtan, B., McClintock, M.A., Chenxiang, L. & Shih, W.M. Recovery of intact DNA nanostructures after agarose gel–based separation. Nat. Methods8, 192–194 (2011). ArticleCASPubMed Google Scholar
Lin, C., Perrault, S.D., Kwak, M., Graf, F. & Shih, W.M. Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res.41, e40 (2013). ArticleCASPubMed Google Scholar
Stahl, E., Martin, T.G., Praetorius, F. & Dietz, H. Facile and scalable preparation of pure and dense DNA origami solutions. Angew. Chem. Int. Ed. Engl.53, 12735–12740 (2014). ArticleCASPubMedPubMed Central Google Scholar
Steinhauer, C., Jungmann, R., Sobey, T.L., Simmel, F.C. & Tinnefeld, P. DNA origami as a nanoscopic ruler for super-resolution microscopy. Angew. Chem. Int. Ed. Engl.48, 8870–8873 (2009). ArticleCASPubMed Google Scholar
Schmied, J.J. et al. DNA origami–based standards for quantitative fluorescence microscopy. Nat. Protoc.9, 1367–1391 (2014). ArticleCASPubMed Google Scholar
Dean, K.M. & Palmer, A.E. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol.10, 512–523 (2014). ArticleCASPubMedPubMed Central Google Scholar
Dempsey, G.T., Vaughan, J.C., Chen, K.H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods8, 1027–1036 (2011). ArticleCASPubMedPubMed Central Google Scholar
Los, G.V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol.3, 373–382 (2008). ArticleCASPubMed Google Scholar
Keppler, A., Pick, H., Arrivoli, C., Vogel, H. & Johnsson, K. Labeling of fusion proteins with synthetic fluorophores in live cells. Proc. Natl. Acad. Sci. USA101, 9955–9959 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wang, L., Xie, J. & Schultz, P.G. Expanding the genetic code. Annu. Rev. Biophys. Biomol. Struct.35, 225–249 (2006). ArticlePubMedCAS Google Scholar
Schweller, R.M. et al. Multiplexed in situ immunofluorescence using dynamic DNA complexes. Angew. Chem. Int. Ed. Engl.51, 9292–9296 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ullal, A.V. et al. Cancer cell profiling by barcoding allows multiplexed protein analysis in fine-needle aspirates. Sci. Transl. Med.6, 219ra9 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Gong, H. et al. Simple method to prepare oligonucleotide-conjugated antibodies and its application in multiplex protein detection in single cells. Bioconjug. Chem.27, 217–225 (2016). ArticleCASPubMed Google Scholar
Xu, K., Babcock, H.P. & Zhuang, X. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat. Methods9, 185–188 (2012). ArticleCASPubMedPubMed Central Google Scholar
Whelan, D.R. & Bell, T.D.M. Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters. Sci. Rep.5, 7924 (2015). ArticleCASPubMedPubMed Central Google Scholar
Beier, H.T. & Ibey, B.L. Experimental comparison of the high-speed imaging performance of an EM-CCD and sCMOS camera in a dynamic live-cell imaging test case. PLoS One9, e84614 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Huang, F. et al. Video-rate nanoscopy using sCMOS camera–specific single-molecule localization algorithms. Nat. Methods10, 653–658 (2013). ArticleCASPubMedPubMed Central Google Scholar
Shroff, H., Galbraith, C.G., Galbraith, J.A. & Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods5, 417–423 (2008). ArticleCASPubMedPubMed Central Google Scholar
Venkataramani, V., Herrmannsdörfer, F., Heilemann, M. & Kuner, T. SuReSim: simulating localization microscopy experiments from ground truth models. Nat. Methods13, 319–321 (2016). ArticlePubMedCAS Google Scholar
Sage, D. et al. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat. Methods12, 717–724 (2015). ArticleCASPubMed Google Scholar
Smith, C.S., Joseph, N., Rieger, B. & Lidke, K.A. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat. Methods7, 373–375 (2010). ArticleCASPubMedPubMed Central Google Scholar
Egner, A. et al. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys. J.93, 3285–3290 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. et al. Localization events-based sample drift correction for localization microscopy with redundant cross-correlation algorithm. Opt. Express22, 15982–15991 (2014). ArticlePubMedPubMed Central Google Scholar
Endesfelder, U., Malkusch, S., Fricke, F. & Heilemann, M. A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment. Histochem. Cell Biol.141, 629–638 (2014). ArticleCASPubMed Google Scholar
Bates, M., Huang, B., Dempsey, G.T. & Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science317, 1749–1753 (2007). ArticleCASPubMedPubMed Central Google Scholar
Huang, B., Jones, S.A., Brandenburg, B. & Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods5, 1047–1052 (2008). ArticleCASPubMedPubMed Central Google Scholar
Shin, J.Y. et al. Visualization and functional dissection of coaxial paired SpoIIIE channels across the sporulation septum. Elife4 (2015).
Puchner, E.M., Walter, J.M., Kasper, R., Huang, B. & Lim, W.A. Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. Proc. Natl. Acad. Sci. USA110, 16015–16020 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lee, S.-H., Shin, J.Y., Lee, A. & Bustamante, C. Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc. Natl. Acad. Sci. USA109, 17436–17441 (2012). ArticleCASPubMedPubMed Central Google Scholar
Rollins, G.C., Shin, J.Y., Bustamante, C. & Pressé, S. Stochastic approach to the molecular counting problem in superresolution microscopy. Proc. Natl. Acad. Sci. USA112, E110–8 (2015). ArticleCASPubMed Google Scholar
Nieuwenhuizen, R.P.J. et al. Quantitative localization microscopy: effects of photophysics and labeling stoichiometry. PLoS One10, e0127989 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Sengupta, P., Jovanovic-Talisman, T. & Lippincott-Schwartz, J. Quantifying spatial organization in point-localization superresolution images using pair correlation analysis. Nat. Protoc.8, 345–354 (2013). ArticleCASPubMedPubMed Central Google Scholar
Juette, M.F. et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods5, 527–529 (2008). ArticleCASPubMed Google Scholar
Broeken, J. et al. Resolution improvement by 3D particle averaging in localization microscopy. Methods Appl. Fluoresc.3, 014003 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Cheng, Y., Yifan, C., Nikolaus, G., Penczek, P.A. & Thomas, W. A primer to single-particle cryo-electron microscopy. Cell161, 438–449 (2015). ArticleCASPubMedPubMed Central Google Scholar
Szymborska, A. et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science341, 655–658 (2013). ArticleCASPubMed Google Scholar
Loschberger, A. et al. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J. Cell Sci.125, 570–575 (2012). ArticlePubMedCAS Google Scholar
Penczek, P., Radermacher, M. & Frank, J. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy40, 33–53 (1992). ArticleCASPubMed Google Scholar
Perrault, S.D. & Chan, W.C.W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. J. Am. Chem. Soc.131, 17042–17043 (2009). ArticleCASPubMed Google Scholar