Cytokines in cancer pathogenesis and cancer therapy (original) (raw)
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell100, 57–70 (2000). CASPubMed Google Scholar
Liotta, L. A. & Kohn, E. C. The microenvironment of the tumour–host interface. Nature411, 375–379 (2001). CASPubMed Google Scholar
Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med.1, 27–31 (1995). CASPubMed Google Scholar
Clark, W. et al. Model predicting survival in stage I melanoma based on tumor progression. J. Natl. Cancer Inst.81, 1893–1904 (1989). This study was the first to demonstrate that intratumoral T-cell infiltrates are correlated with improved clinical outcomes in human melanoma. PubMed Google Scholar
Clemente, C. et al. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer77, 1303–1310 (1996). CASPubMed Google Scholar
Naito, Y. et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res.58, 3491–3494 (1998). CASPubMed Google Scholar
Nakano, O. et al. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res.61, 5132–5136 (2001). CASPubMed Google Scholar
Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Eng. J. Med.348, 203–213 (2003). CAS Google Scholar
Dunn, G., Bruce, A., Ikeda, H., Old, L. & Schreiber, R. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol.3, 991–998 (2002). CAS Google Scholar
Ames, B. N., Gold, L. S. & Willett, W. C. The causes and prevention of cancer. Proc. Natl Acad. Sci. USA92, 5258–5265 (1995). CASPubMedPubMed Central Google Scholar
Ochsenbein, A. F. et al. Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature411, 1058–1064 (2001). CASPubMed Google Scholar
Dranoff, G. & Mulligan, R. C. Gene transfer as cancer therapy. Adv. Immunol.58, 417–454 (1995). CASPubMed Google Scholar
Paul, W. E. Pleiotropy and redundancy: T cell-derived lymphokines in the immune response. Cell57, 521–524 (1989). CASPubMed Google Scholar
Janeway, C. A. Jr. How the immune system works to protect the host from infection: a personal view. Proc. Natl Acad. Sci. USA98, 7461–7468 (2001). CASPubMedPubMed Central Google Scholar
Zinkernagel, R. M. On natural and artificial vaccinations. Annu. Rev. Immunol.21, 515–546 (2003). CASPubMed Google Scholar
Diefenbach, A. & Raulet, D. The innate immune response to tumors and its role in the induction of T-cell immunity. Immunol. Rev.188, 9–21 (2002). CASPubMed Google Scholar
Karre, K. NK cells, MHC class I molecules and the missing self. Scan. J. Immunol.55, 221–228 (2002). CAS Google Scholar
Albert, M. et al. Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med.188, 1359–1368 (1998). CASPubMedPubMed Central Google Scholar
Basu, S., Binder, R. J., Ramalingam, T. & Srivastava, P. K. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity14, 303–313 (2001). CASPubMed Google Scholar
Sharpe, A. H. & Freeman, G. J. The B7-CD28 superfamily. Nature Rev. Immunol.2, 116–126 (2002). CAS Google Scholar
Banchereau, J. & Steinman, R. Dendritic cells and the control of immunity. Nature392, 245–252 (1998). CASPubMed Google Scholar
Boon, T. & van der Bruggen, P. Human tumor antigens recognized by T lymphocytes. J. Exp. Med.183, 725–729 (1996). CASPubMed Google Scholar
Sahin, U. et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc. Natl Acad. Sci. USA92, 11810–11813 (1995). CASPubMedPubMed Central Google Scholar
Marincola, F. M., Jaffee, E. M., Hicklin, D. J. & Ferrone, S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv. Immunol.74, 181–273 (2000). CASPubMed Google Scholar
Kaplan, D. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl Acad. Sci. USA95, 7556–7561 (1998). CASPubMedPubMed Central Google Scholar
Street, S. E., Cretney, E. & Smyth, M. J. Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis. Blood97, 192–197 (2001). CASPubMed Google Scholar
Qin, Z., Kim, H. J., Hemme, J. & Blankenstein, T. Inhibition of methylcholanthrene-induced carcinogenesis by an interferon γ receptor-dependent foreign body reaction. J. Exp. Med.195, 1479–1490 (2002). CASPubMedPubMed Central Google Scholar
Bach, E. A., Aguet, M. & Schreiber, R. D. The IFNγ receptor: a paradigm for cytokine receptor signaling. Annu. Rev. Immunol.15, 563–591 (1997). CASPubMed Google Scholar
Smyth, M. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med.191, 661–668 (2000). CASPubMedPubMed Central Google Scholar
Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature410, 1107–1111 (2001). This study delineates an increased incidence of spontaneous carcinomas in mice deficient inStat1andRag2. CASPubMed Google Scholar
Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science294, 605–609 (2001). CASPubMed Google Scholar
Girardi, M. et al. Resident skin-specific γδ T cells provide local, nonredundant regulation of cutaneous inflammation. J. Exp. Med.195, 855–867 (2002). CASPubMedPubMed Central Google Scholar
Gao, Y. et al. γδ T cells provide an early source of interferon γ in tumor immunity. J. Exp. Med.198, 433–442 (2003). CASPubMedPubMed Central Google Scholar
van den Broek, M. et al. Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med.184, 1781–1790 (1996). CASPubMed Google Scholar
Takeda, K. et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J. Exp. Med.195, 161–169 (2002). CASPubMedPubMed Central Google Scholar
Smyth, M. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med.192, 755–760 (2000). CASPubMedPubMed Central Google Scholar
Street, S. E., Trapani, J. A., MacGregor, D. & Smyth, M. J. Suppression of lymphoma and epithelial malignancies effected by interferon γ. J. Exp. Med.196, 129–134 (2002). CASPubMedPubMed Central Google Scholar
Davidson, W., Giese, T. & Fredrickson, T. Spontaneous development of plasmacytoid tumors in mice with defective fas–fas ligand interactions. J. Exp. Med.187, 1825–1838 (1998). CASPubMedPubMed Central Google Scholar
Siegel, R. M., Chan, F. K., Chun, H. J. & Lenardo, M. J. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nature Immunol.1, 469–474 (2000). CAS Google Scholar
Enzler, T. et al. Deficiencies of GM-CSF and interferon-γ link inflammation and cancer. J. Exp. Med.197, 1213–1219 (2003). This study delineates a crucial role for microbial agents in the spontaneous development of lymphomas and solid tumors inGm-csf/Ifn-γ-deficient mice. CASPubMedPubMed Central Google Scholar
Kado, S. et al. Intestinal microflora are necessary for development of spontaneous adenocarcinoma of the large intestine in T-cell receptor β chain and p53 double-knockout mice. Cancer Res.61, 2395–2398 (2001). CASPubMed Google Scholar
Engle, S. J. et al. Elimination of colon cancer in germ-free transforming growth factor β1-deficient mice. Cancer Res.62, 6362–6366 (2002). CASPubMed Google Scholar
Penn, I. Depressed immunity and the development of cancer. Cancer Detect. Prev.18, 241–252 (1994). CASPubMed Google Scholar
Kuper, H., Adami, H. O. & Trichopoulos, D. Infections as a major preventable cause of human cancer. J. Intern. Med.248, 171–183 (2000). CASPubMed Google Scholar
Pisani, P., Parkin, D. M., Munoz, N. & Ferlay, J. Cancer and infection: estimates of the attributable fraction in 1990. Cancer Epidemiol. Biomarkers Prev.6, 387–400 (1997). CASPubMed Google Scholar
El-Omar, E. M. et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature404, 398–402 (2000). CASPubMed Google Scholar
Nakamoto, Y., Guidotti, L. G., Kuhlen, C. V., Fowler, P. & Chisari, F. V. Immune pathogenesis of hepatocellular carcinoma. J. Exp. Med.188, 341–350 (1998). CASPubMedPubMed Central Google Scholar
Nakamoto, Y. et al. Prevention of hepatocellular carcinoma development associated with chronic hepatitis by anti-fas ligand antibody therapy. J. Exp. Med.196, 1105–1111 (2002). CASPubMedPubMed Central Google Scholar
Fehniger, T. et al. Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J. Exp. Med.193, 219–231 (2001). CASPubMedPubMed Central Google Scholar
Hudson, J. et al. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J. Exp. Med.190, 1375–1382 (1999). CASPubMedPubMed Central Google Scholar
Moore, R. J. et al. Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Nature Med.5, 828–831 (1999). CASPubMed Google Scholar
Hilbert, D. M., Kopf, M., Mock, B. A., Kohler, G. & Rudikoff, S. Interleukin 6 is essential for in vivo development of B lineage neoplasms. J. Exp. Med.182, 243–248 (1995). CASPubMed Google Scholar
Lattanzio, G. et al. Defective development of pristane-oil-induced plasmacytomas in interleukin-6-deficient BALB/c mice. Am. J. Pathol.151, 689–696 (1997). CASPubMedPubMed Central Google Scholar
Lin, E., Nguyen, A., Russell, R. & Pollard, J. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med.193, 727–739 (2001). CASPubMedPubMed Central Google Scholar
Voronov, E. et al. IL-1 is required for tumor invasiveness and angiogenesis. Proc. Natl Acad. Sci. USA100, 2645–2650 (2003). CASPubMedPubMed Central Google Scholar
Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell103, 481–490 (2000). This study demonstrates that immune cells can promote tumour formation and progression. CASPubMedPubMed Central Google Scholar
Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature410, 50–56 (2001). CASPubMed Google Scholar
Steinbach, G. et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Eng. J. Med.342, 1946–1952 (2000). CAS Google Scholar
Jacoby, R. F., Seibert, K., Cole, C. E., Kelloff, G. & Lubet, R. A. The cyclooxygenase-2 inhibitor celecoxib is a potent preventive and therapeutic agent in the min mouse model of adenomatous polyposis. Cancer Res.60, 5040–5044 (2000). CASPubMed Google Scholar
Nauts, H., Fowler, G. & Bogatko, F. A review of the influence of bacterial infection and of bacterial products (Coley's toxins) on malignant tumors in man; a critical analysis of 30 inoperable cases treated by Coley's mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study. Acta Med. Scand.144, S1–S103 (1953). This report documents durable clinical remissions in response to mixed bacterial toxins. Google Scholar
Interferon α versus chemotherapy for chronic myeloid leukemia: a meta-analysis of seven randomized trials: Chronic Myeloid Leukemia Trialists' Collaborative Group. J. Natl. Cancer Inst.89, 1616–1620 (1997).
Kirkwood, J. et al. Interferon α-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J. Clin. Oncol.14, 7–17 (1996). CASPubMed Google Scholar
Kirkwood, J. M. et al. High-dose interferon α-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. J. Clin. Oncol.19, 2370–2380 (2001). CASPubMed Google Scholar
Fyfe, G. et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol.13, 688–696 (1995). CASPubMed Google Scholar
Rosenberg, S. A. et al. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J. Natl. Cancer Inst.85, 622–632 (1993). CASPubMed Google Scholar
Soiffer, R. J. et al. Expansion and manipulation of natural killer cells in patients with metastatic cancer by low-dose continuous infusion and intermittent bolus administration of interleukin 2. Clin. Cancer Res.2, 493–499 (1996). CASPubMed Google Scholar
Furtado, G. C., Curotto de Lafaille, M. A., Kutchukhidze, N. & Lafaille, J. J. Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J. Exp. Med.196, 851–857 (2002). CASPubMedPubMed Central Google Scholar
Lienard, D., Ewalenko, P., Delmotte, J. J., Renard, N. & Lejeune, F. J. High-dose recombinant tumor necrosis factor α in combination with interferon γ and melphalan in isolation perfusion of the limbs for melanoma and sarcoma. J. Clin. Oncol.10, 52–60 (1992). CASPubMed Google Scholar
Atkins, M. B. et al. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin. Cancer Res.3, 409–417 (1997). CASPubMed Google Scholar
Spitler, L. E. et al. Adjuvant therapy of stage III and IV malignant melanoma using granulocyte–macrophage colony-stimulating factor. J. Clin. Oncol.18, 1614–1621 (2000). CASPubMed Google Scholar
Rini, B. I., Weinberg, V., Bok, R. & Small, E. J. Prostate-specific antigen kinetics as a measure of the biologic effect of granulocyte–macrophage colony-stimulating factor in patients with serologic progression of prostate cancer. J. Clin. Oncol.21, 99–105 (2003). CASPubMed Google Scholar
Anderson, P. M. et al. Aerosol granulocyte macrophage–colony stimulating factor: a low toxicity, lung-specific biological therapy in patients with lung metastases. Clin. Cancer Res.5, 2316–2323 (1999). CASPubMed Google Scholar
Lieschke, G. J. & Burgess, A. W. Granulocyte colony-stimulating factor and granulocyte–macrophage colony-stimulating factor. N. Eng. J. Med.327, 28–35, 99–106 (1992). CAS Google Scholar
Demetri, G. D., Kris, M., Wade, J., Degos, L. & Cella, D. Quality-of-life benefit in chemotherapy patients treated with epoetin α is independent of disease response or tumor type: results from a prospective community oncology study. Procrit Study Group. J. Clin. Oncol.16, 3412–3425 (1998). CASPubMed Google Scholar
Forni, G. et al. Helper strategy in tumor immunology: expansion of helper lymphocytes and utilization of helper lymphokines for experimental and clinical immunotherapy. Cancer Metast. Rev.7, 289–309 (1988). CAS Google Scholar
Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA90, 3539–3543 (1993). CASPubMedPubMed Central Google Scholar
Cavallo, F. et al. Antitumor efficacy of adenocarcinoma cells engineered to produce interleukin 12 (IL-12) or other cytokines compared with exogenous IL-12. J. Natl. Cancer Inst.89, 1049–1058 (1997). CASPubMed Google Scholar
Boggio, K. et al. Interleukin 12-mediated prevention of spontaneous mammary adenocarcinoma in two lines of her-2/neu transgenic mice. J. Exp. Med.188, 589–596 (1998). CASPubMedPubMed Central Google Scholar
Mach, N. et al. Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte–macrophage colony-stimulating factor or flt3-ligand. Cancer Res.60, 3239–3246 (2000). CASPubMed Google Scholar
Gillessen, S. et al. CD1d-restricted T cells regulate dendritic cell function and antitumor immunity in a granulocyte–macrophage colony-stimulating factor-dependent fashion. Proc. Natl Acad. Sci. USA100, 8874–8879 (2003). CASPubMedPubMed Central Google Scholar
Hung, K. et al. The central role of CD4+ T cells in the antitumor immune response. J. Exp. Med.188, 2357–2368 (1998). CASPubMedPubMed Central Google Scholar
Reilly, R. et al. The collaboration of both humoral and cellular HER-2/neu-targeted immune responses is required for the complete eradication of HER-2/_neu_-expressing tumors. Cancer Res.61, 880–883 (2001). CASPubMed Google Scholar
Curcio, C. et al. Nonredundant roles of antibody, cytokines, and perforin in the eradication of established Her-2/neu carcinomas. J. Clin. Invest.111, 1161–1170 (2003). CASPubMedPubMed Central Google Scholar
Mach, N. & Dranoff, G. Cytokine-secreting tumor cell vaccines. Curr. Opin. Immunol.12, 571–575 (2000). CASPubMed Google Scholar
Soiffer, R. et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete human granulocyte–macrophage colony stimulating factor generates potent anti-tumor immunity in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA95, 13141–13146 (1998). CASPubMedPubMed Central Google Scholar
Schmollinger, J. C. et al. Melanoma inhibitor of apoptosis protein (ML-IAP) is a target for immune-mediated tumor destruction. Proc. Natl Acad. Sci. USA100, 3398–3403 (2003). CASPubMedPubMed Central Google Scholar
Hodi, F. S. et al. ATP6S1 elicits potent humoral responses associated with immune mediated tumor destruction. Proc. Natl Acad. Sci. USA99, 6919–6924 (2002). CASPubMedPubMed Central Google Scholar
Mollick, J. A., Hodi, F. S., Soiffer, R. J., Nadler, L. M. & Dranoff, G. MUC1-like tandem repeat proteins are broadly immunogenic in cancer patients. Cancer Immun.3, 3–20 (2003). PubMed Google Scholar
Simons, J. W. et al. Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte–macrophage colony-stimulating factor gene transfer. Cancer Res.57, 1537–1546 (1997). CASPubMedPubMed Central Google Scholar
Simons, J. et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res.59, 5160–5168 (1999). CASPubMed Google Scholar
Zehnter, S. et al. Tumor metastasis biopsy as a surrogate marker of response to melanoma immunotherapy. Pathology31, 116–122 (1999). Google Scholar
Shenk, T. in Fields Virology (eds Fields, B. N., Knipe, D. M. & Howley, P. M.) 2111–2148 (Lippincott–Raven Publishers, Philadelphia, 1996). Google Scholar
Salgia, R. et al. Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte–macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J. Clin. Oncol.21, 624–630 (2003). PubMed Google Scholar
Borrello, I., Sotomayor, E., Cooke, S. & Levitsky, H. A universal granulocyte–macrophage colony-stimulating factor-producing bystander cell line for use in the formulation of autologous tumor cell-based vaccines. Hum. Gene Ther.10, 1983–1991 (1999). CASPubMed Google Scholar
Jaffee, E. et al. Novel allogeneic granulocyte–macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J. Clin. Oncol.19, 145–156 (2001). CASPubMed Google Scholar
Chambers, C. A., Kuhns, M. S., Egen, J. G. & Allison, J. P. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol.19, 565–594 (2001). CASPubMed Google Scholar
Doyle, A. M. et al. Induction of cytotoxic T lymphocyte antigen 4 (CTLA-4) restricts clonal expansion of helper T cells. J. Exp. Med.194, 893–902 (2001). CASPubMedPubMed Central Google Scholar
Salomon, B. & Bluestone, J. A. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol.19, 225–252 (2001). CASPubMed Google Scholar
Shevach, E. M., McHugh, R. S., Piccirillo, C. A. & Thornton, A. M. Control of T-cell activation by CD4+ CD25+ suppressor T cells. Immunol. Rev.182, 58–67 (2001). CASPubMed Google Scholar
van Elsas, A., Hurwitz, A. & Allison, J. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med.190, 355–366 (1999). CASPubMedPubMed Central Google Scholar
Sutmuller, R. P. et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med.194, 823–832 (2001). CASPubMedPubMed Central Google Scholar
Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science270, 985–988 (1995). CASPubMed Google Scholar
Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity3, 541–547 (1995). CASPubMed Google Scholar
Phan, G. Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA100, 8372–8377 (2003). CASPubMedPubMed Central Google Scholar
Hodi, F. S. et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl Acad. Sci. USA100, 4712–4717 (2003). This study, together with reference 107, indicates that CTLA-4 antibody blockade can be combined with cancer vaccines to increase tumour immunity in patients, albeit with a risk of compromising tolerance to self-antigens. CASPubMedPubMed Central Google Scholar
Herr, H. et al. Intravesical bacille Calmette-Guérin therapy prevents tumor progression and death from superficial bladder cancer: ten-year follow-up of a prospective randomized trial. J. Clin. Oncol.13, 1404–1408 (1995). This study demonstrates that the therapeutic administration of a mycobacteria reduces morbidity and mortality of bladder carcinoma. CASPubMed Google Scholar
Driggers, P. H., Elenbaas, B. A., An, J. B., Lee, I. J. & Ozato, K. Two upstream elements activate transcription of a major histocompatibility complex class I gene in vitro. Nuc. Acids Res.20, 2533–2540 (1992). CAS Google Scholar
Holtschke, T. et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell87, 307–317 (1996). CASPubMed Google Scholar
Hao, S. X. & Ren, R. Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr–Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol. Cell Biol.20, 1149–1161 (2000). CASPubMedPubMed Central Google Scholar
Schiavoni, G. et al. ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8α(+) dendritic cells. J. Exp. Med.196, 1415–1425 (2002). CASPubMedPubMed Central Google Scholar
Schmidt, M. et al. Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias. Blood91, 22–29 (1998). CASPubMed Google Scholar
Takaoka, A. et al. Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature424, 516–523 (2003). CASPubMed Google Scholar
Molldrem, J. et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nature Med.6, 1018–1023 (2000). CASPubMed Google Scholar
Molldrem, J. J. et al. Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J. Clin. Invest.111, 639–647 (2003). CASPubMedPubMed Central Google Scholar
Fearon, E. R. et al. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell60, 397–403 (1990). CASPubMed Google Scholar
Gansbacher, B. et al. Interleukin-2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J. Exp. Med.172, 1217–1224 (1990). CASPubMed Google Scholar
Pulaski, B. A. et al. Interleukin 3 enhances cytotoxic T lymphocyte development and class I major histocompatibility complex re-presentation of exogenous antigen by tumor-infiltrating antigen-presenting cells. Proc. Natl Acad. Sci. USA93, 3669–3674 (1996). CASPubMedPubMed Central Google Scholar
Tepper, R. I., Coffman, R. L. & Leder, P. An eosinophil-dependent mechanism for the antitumor effect of interleukin-4. Science257, 548–551 (1992). CASPubMed Google Scholar
Golumbek, P. T. et al. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science254, 713–716 (1991). CASPubMed Google Scholar
Nishimoto, N. et al. Improvement in Castleman's disease by humanized anti-interleukin-6 receptor antibody therapy. Blood95, 56–61 (2000). CASPubMed Google Scholar
Hock, H., Dorsch, M., Diamanstein, T. & Blankenstein, T. Interleukin-7 induces CD4+ T cell-dependent tumor rejection. J. Exp. Med.174, 1291–1298 (1991). CASPubMed Google Scholar
Qin, Z., Noffz, G., Mohaupt, M. & Blankenstein, T. Interleukin-10 prevents dendritic cell accumulation and vaccination with granulocyte-macrophage colony-stimulating factor gene-modified tumor cells. J. Immunol.159, 770–776 (1997). CASPubMed Google Scholar
Brunda, M. J. et al. Antitumor and antimetastatic activity of interleukin-12 against murine tumors. J. Exp. Med.178, 1223–1230 (1993). CASPubMed Google Scholar
Terabe, M. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R–STAT6 pathway. Nature Immunol.1, 515–520 (2000). CAS Google Scholar
Hazama, S. et al. Tumour cells engineered to secrete interleukin-15 augment anti-tumour immune responses in vivo. Br. J. Cancer80, 1420–1426 (1999). CASPubMedPubMed Central Google Scholar
Micallef, M. J., Tanimoto, T., Kohno, K., Ikeda, M. & Kurimoto, M. Interleukin 18 induces the sequential activation of natural killer cells and cytotoxic T lymphocytes to protect syngeneic mice from transplantation with Meth A sarcoma. Cancer Res.57, 4557–4563 (1997). CASPubMed Google Scholar
Jakubowski, A. A. et al. Phase I study of continuous-infusion recombinant macrophage colony-stimulating factor in patients with metastatic melanoma. Clin. Cancer Res.2, 295–302 (1996). CASPubMed Google Scholar
Biron, C. A. Interferons α and β as immune regulators: a new look. Immunity14, 661–664 (2001). CASPubMed Google Scholar
Tracey, K. J. & Cerami, A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu. Rev. Med.45, 491–503 (1994). CASPubMed Google Scholar
Walczak, H. et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nature Med.5, 157–163 (1999). CASPubMed Google Scholar
Lynch, D. et al. Flt3 ligand induces tumor regression and antitumor immune responses in vivo. Nature Med.3, 625–631 (1997). CASPubMed Google Scholar
Rousseau, R. F. et al. Local and systemic effects of an allogeneic tumor cell vaccine combining transgenic human lymphotactin with interleukin-2 in patients with advanced or refractory neuroblastoma. Blood101, 1718–1726 (2003). CASPubMed Google Scholar
Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nature Med.7, 1118–1122 (2001). CASPubMed Google Scholar