Boyland, E. & Boyland, M. E. Studies in tissue metabolism. IX. The action of colchicine and B. typhosus extract. Biochem. J.31, 454–460 (1937). CASPubMedPubMed Central Google Scholar
Seed, L., Slaughter, D. P. & Limarzi, L. R. Effect of colchicine on human carcinoma. Surgery7, 696–709 (1940). Google Scholar
Algire, G. H., Legallais, F. Y. & Anderson, B. F. Vascular reactions of normal and malignant tissues in vivo. VI. The role of hypotension in the action of components of podophyllotoxin on transplanted sarcomas. J. Natl Cancer Inst.14, 879–887 (1954). One of a classic series of papers on the vascular reactions of tumours. CASPubMed Google Scholar
Baguley, B. C., Holdaway, K. M., Thomsen, L. L., Zhuang, L. & Zwi, L. J. Inhibition of growth of colon 38 adenocarcinoma by vinblastine and colchicine: evidence for a vascular mechanism. Eur. J. Cancer27, 482–487 (1991). CASPubMed Google Scholar
Hill, S. A., Lonergan, S. J., Denekamp, J. & Chaplin, D. J. Vinca alkaloids: anti-vascular effects in a murine tumour. Eur. J. Cancer9, 1320–1324 (1993). Google Scholar
Hill, S. A., Sampson, L. E. & Chaplin, D. J. Anti-vascular approaches to solid tumour therapy: evaluation of vinblastine and flavone acetic acid. Int. J. Cancer63, 119–123 (1995). CASPubMed Google Scholar
Pettit, G. R., Cragg, G. M. & Singh, S. B. Antineoplastic agents, 122. Constituents of Combretum caffrum. J. Nat. Prod.50, 386–391 (1987). Describes the isolation of the combretastatins from their natural source. CASPubMed Google Scholar
Lin, C. M. et al. Interactions of tubulin with potent natural and synthetic analogs of the antimitotic agent combretastatin: a structural-activity study. Mol. Pharmacol.34, 200–208 (1988). CASPubMed Google Scholar
Pettit, G. R. et al. Antineoplastic agents 322. Synthesis of combretastatin A-4 prodrugs. Anticancer Drug Des.10, 299–309 (1995). Describes the synthesis of CA-4-P, the more soluble prodrug of CA-4, allowing its use inin vivomodel systems. CASPubMed Google Scholar
McGown, A. T. & Fox, B. W. Structural and biochemical comparison of the anti-mitotic agents colchicine, combretastatin A4 and amphethinile. Anticancer Drug Des.3, 249–254 (1989). PubMed Google Scholar
Pettit, G. R. & Lippert III, J. W. Antineoplastic agents 429. Syntheses of the combretastatin A-1 and combretastatin B-1 prodrugs. Anticancer Drug Des.15, 203–216 (2000). CASPubMed Google Scholar
Holwell, S. E. & Bibby, M. C. Activity of combretastatin A1 phosphate in murine models of liver metastasis. Br. J. Cancer85 (Suppl. 1), 34 (2001). Google Scholar
Hill, S. A., Tozer, G. M. & Chaplin, D. J. Preclinical evaluation of the antitumour activity of the novel vascular targeting agent Oxi 4503. Anticancer Res.22, 1453–1458 (2002). CASPubMed Google Scholar
Holwell, S. E. et al. Combretastatin A-1 phosphate a novel tubulin-binding agent with in vivo vascular effects in experimental tumours. Anticancer Res.22, 707–711 (2002). CASPubMed Google Scholar
Hua, J. et al. Oxi4503, a novel vascular targeting agent: effects on blood flow and antitumor activity in comparison to combretastatin A-4 phosphate. Anticancer Res.23, 1433–1440 (2003). CASPubMed Google Scholar
Aleksandrzak, K., McGown, A. T. & Hadfield, J. A. Antimitotic activity of diaryl compounds with structures resembling combretastatin A-4. Anticancer Drugs9, 545–550 (1998). CASPubMed Google Scholar
Hatanaka, T. et al. Novel B-ring modified combretastatin analogues: syntheses and antineoplastic activity. Bioorg. Med. Chem. Lett.8, 3371–3374 (1998). CASPubMed Google Scholar
Ohsumi, K. et al. Novel combretastatin analogues effective against murine solid tumors: design and structure–activity relationships. J. Med. Chem.41, 3022–3032 (1998). CASPubMed Google Scholar
Pettit, G. R. et al. Antineoplastic agents. 379. Synthesis of phenstatin phosphate. J. Med. Chem.41, 1688–1695 (1998). CASPubMed Google Scholar
Lawrence, N. J., Rennison, D., Woo, M., McGown, A. T. & Hadfield, J. A. Antimitotic and cell growth inhibitory properties of combretastatin A-4-like ethers. Bioorg. Med. Chem. Lett.11, 51–54 (2001). CASPubMed Google Scholar
Hadimani, M. B. et al. Synthesis, in vitro, and in vivo evaluation of phosphate ester derivatives of combretastatin A-4. Bioorg. Med. Chem. Lett.13, 1505–1508 (2003). CASPubMed Google Scholar
Liou, J. P. et al. Concise synthesis and structure-activity relationships of combretastatin A-4 analogues, 1-aroylindoles and 3-aroylindoles, as novel classes of potent antitubulin agents. J. Med. Chem.47, 4247–4257 (2004). CASPubMed Google Scholar
Perez-Melero, C. et al. A new family of quinoline and quinoxaline analogues of combretastatins. Bioorg. Med. Chem. Lett.14, 3771–3774 (2004). CASPubMed Google Scholar
Sun, L., Vasilevich, N. I., Fuselier, J. A., Hocart, S. J. & Coy, D. H. Examination of the 1,4-disubstituted azetidinone ring system as a template for combretastatin A-4 conformationally restricted analogue design. Bioorg. Med. Chem. Lett.14, 2041–2046 (2004). CASPubMed Google Scholar
Prinz, H. Recent advances in the field of tubulin polymerization inhibitors. Expert Rev. Anticancer Ther.2, 695–708 (2002). CASPubMed Google Scholar
Hori, K., Saito, S., Nihei, Y., Suzuki, M. & Sato, Y. Antitumor effects due to irreversible stoppage of tumor tissue blood flow: evaluation of a novel combretastatin A-4 derivative, AC7700. Jpn. J. Cancer Res.90, 1026–1038 (1999). CASPubMedPubMed Central Google Scholar
Nihei, Y. et al. A novel combretastatin A-4 derivative, AC-7700, shows marked antitumor activity against advanced solid tumors and orthotopically transplanted tumors. Jpn. J. Cancer Res.90, 1016–1025 (1999). CASPubMedPubMed Central Google Scholar
Hori, K., Saito, S., Sato, Y. & Kubota, K. Stoppage of blood flow in 3-methylcholanthrene-induced primary tumor due to a novel combretastatin A-4 derivative, AC7700, and its antitumor effect. Med. Sci. Monit.7, 26–33 (2001). CASPubMed Google Scholar
Hori, K., Saito, S. & Kubota, K. A novel combretastatin A-4 derivative, AC7700, strongly stanches tumour blood flow and inhibits growth of tumours developing in various tissues and organs. Br. J. Cancer86, 1604–1614 (2002). CASPubMedPubMed Central Google Scholar
Beauregard, D. A. et al. Magnetic resonance imaging and spectroscopy of combretastain A4 prodrug-induced disruption of tumour perfusion and energetic status. Br. J. Cancer77, 1761–1767 (1998). CASPubMedPubMed Central Google Scholar
Dark, G. D. et al. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res.57, 1829–1834 (1997). The first solid evidence for the combretastatins having a potent and selective vascular-disrupting effect in solid tumours. CASPubMed Google Scholar
Horsman, M., Ehrnrooth, E., Ladekarl, M. & Overgaard, J. The effect of combretastatin A-4 disodium phosphate in a C3H mouse mammary carcinoma and a variety of murine spontaneous tumors. Int. J. Radiat. Oncol. Biol. Phys.42, 895–898 (1998). CASPubMed Google Scholar
Maxwell, R. J., Nielsen, F. U., Breidahl, T., Stodkilde-Jorgensen, H. & Horsman, M. R. Effects of combretastatin on murine tumours monitored by 31P MRS, 1H MRS and 1H MRI. Int. J. Radiat. Oncol. Biol. Phys.42, 891–894 (1998). CASPubMed Google Scholar
Chaplin, D. J., Pettit, G. R. & Hill, S. A. Anti-vascular approaches to solid tumour therapy: evaluation of combretastatin A4 phosphate. Anticancer Res.19, 189–196 (1999). CASPubMed Google Scholar
Grosios, K., Holwell, S. E., McGown, A. T., Pettit, G. R. & Bibby, M. C. In vivo and in vitro evaluation of combretastatin A-4 and its sodium phosphate prodrug. Br. J. Cancer81, 1318–1327 (1999). CASPubMedPubMed Central Google Scholar
Tozer, G. M. et al. Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res.59, 1626–1634 (1999). CASPubMed Google Scholar
Pedley, R. B. et al. Eradication of colorectal xenografts by combined radioimmunotherapy and combretastatin a-4 3-_O_-phosphate. Cancer Res.61, 4716–4722 (2001). CASPubMed Google Scholar
Lin, C. M., Ho, H. H., Pettit, G. R. & Hamel, E. Antimitotic natural products combretastatin A-4 and combretastatin A-2: studies on the mechanism of their inhibition of the binding of colchicine to tubulin. Biochemistry28, 6984–6991 (1989). CASPubMed Google Scholar
Rustin, G. J. et al. Phase I clinical trial of weekly combretastatin A4 phosphate: clinical and pharmacokinetic results. J. Clin. Oncol.21, 2815–2822 (2003). CASPubMed Google Scholar
Plowman, J. et al. Flavone acetic acid: a novel agent with preclinical antitumor activity against colon adenocarcinoma 38 in mice. Cancer Treat. Rep.70, 631–635 (1986). CASPubMed Google Scholar
Smith, G. P., Calveley, S. B., Smith, M. J. & Baguley, B. C. Flavone acetic acid (NSC 347512) induces haemorrhagic necrosis of mouse colon 26 and 38 tumours. Eur. J. Cancer Clin. Oncol.23, 1209–1211 (1987). CASPubMed Google Scholar
Evelhoch, J. L. et al. Flavone acetic acid (NSC 347512)-induced modulation of murine tumor physiology monitored by in vivo nuclear magnetic resonance spectroscopy. Cancer Res.48, 4749–4755 (1988). CASPubMed Google Scholar
Hill, S. A., Williams, K. B. & Denekamp, J. Vascular collapse after flavone acetic acid: a possible mechanism of its anti-tumour action. Eur. J. Cancer Clin. Oncol.25, 1419–1424 (1989). CASPubMed Google Scholar
Zwi, L. J., Baguley, B. C., Gavin, J. B. & Wilson, W. R. Blood flow failure as a major determinant in the antitumor action of flavone acetic acid. J. Natl. Cancer Inst.81, 1005–1013 (1989). References 44 and 45 provide an early introduction to the concept of vascular shutdown and how it might be measured. CASPubMed Google Scholar
Denekamp, J., Hill, S. A. & Hobson, B. Vascular occlusion and tumour cell death. Eur. J. Cancer Clin. Oncl.19, 271–275 (1983). CAS Google Scholar
Baguley, B. C. Antivascular therapy of cancer: DMXAA. Lancet Oncol.4, 141–148 (2003). CASPubMed Google Scholar
Jameson, M. B. et al. Clinical aspects of a phase I trial of 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a novel antivascular agent. Br. J. Cancer88, 1844–1850 (2003). Report of the clinical trial of DMXAA that discusses some of the issues that have to be addressed when measuring tumour vascular effects in the clinic. CASPubMedPubMed Central Google Scholar
Tozer, G. M. et al. Mechanisms associated with tumor vascular shutdown induced by combretastatin A-4 phosphate: intravital microscopy and measurement of vascular permeability. Cancer Res.61, 6413–6422 (2001). Detailed study of mechanisms of action of CA-4–P at the physiological level. CASPubMed Google Scholar
Zwi, L. J., Baguley, B. C., Gavin, J. B. & Wilson, W. R. Correlation between immune and vascular activities of xanthenone acetic acid antitumor agents. Oncol. Res.6, 79–85 (1994). CASPubMed Google Scholar
Galbraith, S. M. et al. Effects of combretastatin A4 phosphate on endothelial cell morphology in vitro and relationship to tumour vascular targeting activity in vivo. Anticancer Res.21, 93–102 (2001). CASPubMed Google Scholar
Kanthou, C. & Tozer, G. M. The tumor vascular targeting agent combretastatin A-4-phosphate induces reorganization of the actin cytoskeleton and early membrane blebbing in human endothelial cells. Blood99, 2060–2069 (2002). Study of the cell-signalling events in endothelial cellsin vitro, which are initiated by the effects of CA-4-P on the tubulin cytoskeleton and lead to functional changes in terms of monolayer permeability and assembly of junctional proteins. CASPubMed Google Scholar
Tozer, G. M., Kanthou, C., Parkins, C. S. & Hill, S. A. The biology of the combretastatins as tumour vascular targeting agents. Int. J. Exp. Pathol.83, 21–38 (2002). CASPubMedPubMed Central Google Scholar
Tozer, G. M. et al. Intravital imaging of tumour vascular networks using multi-photon fluorescence microscopy. Adv. Drug Deliv. Rev.57, 135–152 (2005). CASPubMed Google Scholar
Zhao, L., Ching, L. M., Kestell, P., Kelland, L. R. & Baguley, B. C. Mechanisms of tumor vascular shutdown induced by 5,6-dimethylxanthenone-4–acetic acid (DMXAA): Increased tumor vascular permeability. Int. J. Cancer (in the press).
Milosevic, M. F., Fyles, A. W. & Hill, R. P. The relationship between elevated interstitial fluid pressure and blood flow in tumors: a bioengineering analysis. Int. J. Radiat. Oncol. Biol. Phys.43, 1111–1123 (1999). An instructive analysis of the role of interstitial fluid pressure in the control of tumour blood flow. CASPubMed Google Scholar
Blakey, D. C. et al. Antitumor activity of the novel vascular targeting agent ZD6126 in a panel of tumor models. Clin. Cancer Res.8, 1974–1983 (2002). CASPubMed Google Scholar
Hori, K. & Saito, S. Microvascular mechanisms by which the combretastatin A-4 derivative AC7700 (AVE8062) induces tumour blood flow stasis. Br. J. Cancer89, 1334–1344 (2003). CASPubMedPubMed Central Google Scholar
Hori, K. & Saito, S. Induction of tumour blood flow stasis and necrosis: a new function for epinephrine similar to that of combretastatin A-4 derivative AVE8062 (AC7700). Br. J. Cancer90, 549–553 (2004). CASPubMedPubMed Central Google Scholar
Less, J. R., Skalak, T. C., Sevick, E. M. & Jain, R. K. Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res.51, 265–273 (1991). CASPubMed Google Scholar
Lominadze, D. & Mchedlishvili, G. Red blood cell behavior at low flow rate in microvessels. Microvasc. Res.58, 187–189 (1999). CASPubMed Google Scholar
Dudek, S. M. & Garcia, J. G. Cytoskeletal regulation of pulmonary vascular permeability. J. Appl. Physiol.91, 1487–1500 (2001). CASPubMed Google Scholar
Dejana, E., Spagnuolo, R. & Bazzoni, G. Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thromb. Haemost.86, 308–315 (2001). CASPubMed Google Scholar
Dvorak, H. F., Nagy, J. A., Dvorak, J. T. & Dvorak, A. M. Identification and characerization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am. J. Pathol.133, 95–109 (1988). CASPubMedPubMed Central Google Scholar
Lum, H. & Malik, A. B. Mechanisms of increased endothelial permeability. Can. J. Physiol. Pharmacol.74, 787–800 (1996). CASPubMed Google Scholar
Bates, D. O. & Harper, S. J. Regulation of vascular permeability by vascular endothelial growth factors. Vascul. Pharmacol.39, 225–237 (2002). CASPubMed Google Scholar
Su, M. Y. et al. Pharmacokinetic changes induced by vasomodulators in kidneys, livers, muscles, and implanted tumors in rats as measured by dynamic Gd-DTPA-enhanced MRI. Magn. Reson. Med.36, 868–877 (1996). CASPubMed Google Scholar
Johansson, M., Henriksson, R., Bergenheim, A. T. & Koskinen, L. O. Interleukin-2 and histamine in combination inhibit tumour growth and angiogenesis in malignant glioma. Br. J. Cancer83, 826–832 (2000). CASPubMedPubMed Central Google Scholar
Wojciak-Stothard, B. & Ridley, A. J. Rho GTPases and the regulation of endothelial permeability. Vascul. Pharmacol.39, 187–199 (2002). CASPubMed Google Scholar
Garcia, J. G., Davis, H. W. & Patterson, C. E. Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J. Cell Physiol.163, 510–522 (1995). CASPubMed Google Scholar
Amano, M. et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem.271, 20246–20249 (1996). CASPubMed Google Scholar
Verin, A. D. et al. Microtubule disassembly increases endothelial cell barrier dysfunction: role of MLC phosphorylation. Am. J. Physiol. Lung Cell Mol. Physiol.281, L565–L574 (2001). CASPubMed Google Scholar
Ye, L. H. et al. Myosin light-chain kinase of smooth muscle stimulates myosin ATPase activity without phosphorylating myosin light chain. Proc. Natl Acad. Sci. USA96, 6666–6671 (1999). CASPubMedPubMed Central Google Scholar
Brooks, A. C. et al. The vascular targeting agent combretastatin A-4-phosphate induces neutrophil recruitment to endothelial cells in vitro. Anticancer Res.23, 3199–3206 (2003). CASPubMed Google Scholar
Parkins, C. S., Holder, A. J., Hill, S. A., Chaplin, D. J. & Tozer, G. M. Determinants of anti-vascular action by combretastatin A-4 phosphate: role of nitric oxide. Br. J. Cancer83, 811–816 (2000). CASPubMedPubMed Central Google Scholar
Korbelik, M. & Cecic, I. Contribution of myeloid and lymphoid host cells to the curative outcome of mouse sarcoma treatment by photodynamic therapy. Cancer Lett.137, 91–98 (1999). CASPubMed Google Scholar
Prise, V. E., Honess, D. J., Stratford, M. R. L., Wilson, J. & Tozer, G. M. The vascular response of tumor and normal tissues in the rat to the vascular targeting agent, combretastatin A-4-phosphate, at clinically relevant doses. Int. J. Oncol.21, 717–726 (2002). CASPubMed Google Scholar
Nihei, Y. et al. Evaluation of antivascular and antimitotic effects of tubulin binding agents in solid tumor therapy. Jpn. J. Cancer Res.90, 1387–1396 (1999). CASPubMedPubMed Central Google Scholar
Baguley, B. C., Zhuang, L. & Kestell, P. Increased plasma serotonin following treatment with flavone-8-acetic acid, 5,6-dimethylxanthenone-4-acetic acid, vinblastine, and colchicine: relation to vascular effects. Oncol. Res.9, 55–60 (1997). CASPubMed Google Scholar
Alexander, J. S., Hechtman, H. B. & Shepro, D. Serotonin induced actin polymerization and association with cytoskeletal elements in cultured bovine aortic endothelium. Biochem. Biophys. Res. Commun.143, 152–158 (1987). CASPubMed Google Scholar
Lash, C. J. et al. Enhancement of the anti-tumour effects of the antivascular agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) by combination with 5-hydroxytryptamine and bioreductive drugs. Br. J. Cancer78, 439–445 (1998). CASPubMedPubMed Central Google Scholar
Ahmed, B. et al. Vascular targeting effect of combretastatin A-4 phosphate dominates the inherent angiogenesis inhibitory activity. Int. J. Cancer105, 20–25 (2003). CASPubMed Google Scholar
Iyer, S. et al. Induction of apoptosis in proliferating human endothelial cells by the tumor-specific antiangiogenesis agent combretastatin A-4. Cancer Res.58, 4510–4514 (1998). CASPubMed Google Scholar
Kanthou, C. et al. The tubulin-binding agent combretastatin A-4-phosphate arrests endothelial cells in mitosis and induces mitotic cell death. Am. J. Pathol.165, 1401–1411 (2004). CASPubMedPubMed Central Google Scholar
Hill, S. A., Chaplin, D. J., Lewis, G. & Tozer, G. M. Schedule dependence of combretastatin A4 phosphate in transplanted and spontaneous tumour models. Int. J. Cancer102, 70–74 (2002). CASPubMed Google Scholar
Ching, L. M. et al. Induction of endothelial cell apoptosis by the antivascular agent 5,6-Dimethylxanthenone-4-acetic acid. Br. J. Cancer86, 1937–1942 (2002). CASPubMedPubMed Central Google Scholar
Sheng, Y. et al. Combretastatin family member OXI4503 induces tumor vascular collapse through the induction of endothelial apoptosis. Int. J. Cancer111, 604–610 (2004). CASPubMed Google Scholar
Kirwan, I. G. et al. Comparative preclinical pharmacokinetic and metabolic studies of the combretastatin prodrugs combretastatin A4 phosphate and A1 phosphate. Clin. Cancer Res.10, 1446–1453 (2004). CASPubMed Google Scholar
Cao, Z., Baguley, B. C. & Ching, L. M. Interferon-inducible protein 10 induction and inhibition of angiogenesis in vivo by the antitumor agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Cancer Res.61, 1517–1521 (2001). CASPubMed Google Scholar
Zhao, L., Ching, L. M., Kestell, P. & Baguley, B. C. Improvement of the antitumor activity of intraperitoneally and orally administered 5,6-dimethylxanthenone-4-acetic acid by optimal scheduling. Clin. Cancer Res.9, 6545–6550 (2003). CASPubMed Google Scholar
Hendrix, M. J. et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc. Natl Acad. Sci. USA98, 8018–8023 (2001). CASPubMedPubMed Central Google Scholar
Zhao, L. S., Edgar, E., Marshall, L., Kelland, L. & Baguley, B. C. Inhibition of vasculogenic mimicry in melanoma by the antivascular drug 5,6-dimethylxanthenone-4–acetic acid (DMXAA). Eur. J. Cancer Suppl. 2 (8), 47 (2004). Google Scholar
Ching, L. M. et al. Induction of intratumoral tumor necrosis factor (TNF) synthesis and hemorrhagic necrosis by 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in TNF knockout mice. Cancer Res.59, 3304–3307 (1999). Gives an introduction to the role of cytokines in the action of DMXAA. CASPubMed Google Scholar
Wang, L. C. et al. Induction of tumour necrosis factor and interferon-g in cultured murine splenocytes by the antivascular agent DMXAA and its metabolites. Biochem. Pharmacol.67, 937–945 (2004). CASPubMed Google Scholar
Kallinowski, F., Schaefer, C., Tyler, G. & Vaupel, P. In vivo targets of recombinant human tumour necrosis factor-α: blood flow, oxygen consumption and growth of isotransplanted rat tumours. Br. J. Cancer60, 555–560 (1989). CASPubMedPubMed Central Google Scholar
Murata, R., Overgaard, J. & Horsman, M. R. Comparative effects of combretastatin A-4 disodium phosphate and 5,6-dimethylxanthenone-4-acetic acid on blood perfusion in a murine tumour and normal tissues. Int. J. Radiat. Biol.77, 195–204 (2001). CASPubMed Google Scholar
Denekamp, J. & Hobson, B. Endothelial cell proliferation in experimental tumours. Br. J. Cancer46, 711–720 (1982). One of a series of papers by this author setting out the principles and potential for therapeutic targeting of the tumour vasculature, which was influential in stimulating research in this field. CASPubMedPubMed Central Google Scholar
Eberhard, A. et al. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res.60, 1388–1393 (2000). CASPubMed Google Scholar
Park, J. H. et al. Hypoxia/aglycemia increases endothelial permeability: role of second messengers and cytoskeleton. Am. J. Physiol.277, C1066–C1074 (1999). CASPubMed Google Scholar
Paria, B. C. et al. Tumor necrosis factor-alpha-induced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. Am. J. Physiol. Lung Cell Mol. Physiol.287, L1303–L1313 (2004). CASPubMed Google Scholar
Michel, C. C. & Curry, F. E. Microvascular permeability. Physiol. Rev.79, 703–761 (1999). An excellent comprehensive review of microvascular permeability from the molecular to the physiological level. CASPubMed Google Scholar
Tiruppathi, C., Minshall, R. D., Paria, B. C., Vogel, S. M. & Malik, A. B. Role of Ca2+ signaling in the regulation of endothelial permeability. Vascul. Pharmacol.39, 173–185 (2002). CASPubMed Google Scholar
Beauregard, D. A., Hill, S. A., Chaplin, D. J. & Brindle, K. M. The susceptibility of tumors to the antivascular drug combretastatin A4 phosphate correlates with vascular permeability. Cancer Res.61, 6811–6815. (2001). CASPubMed Google Scholar
Otani, M. et al. TZT-1027, an antimicrotubule agent attacks tumor vasculature and induces tumor cell death. Japn. J. Cancer Res.91, 837–844 (2000). CAS Google Scholar
Lew, Y. S., Brown, S. L., Griffin, R. J., Song, C. W. & Kim, J. H. Arsenic trioxide causes selective necrosis in solid murine tumors by vascular shutdown. Cancer Res.59, 6033–6037 (1999). CASPubMed Google Scholar
Davis, P. D. et al. ZD6126: a novel vascular-targeting agent that causes destruction of tumor vasculature. Cancer Res.62, 7247–7253 (2002). CASPubMed Google Scholar
Segreti, J. A. et al. Tumor selective antivascular effects of the novel antimitotic compound ABT-751: an in vivo rat regional hemodynamic study. Cancer Chemother. Pharmacol.54, 273–281 (2004). CASPubMed Google Scholar
Kasibhatla, S. et al. Discovery and mechanism of action of a novel series of apoptosis inducers with potential vascular targeting activity. Mol. Cancer Ther.3, 1365–1374 (2004). CASPubMed Google Scholar
Corada, M. et al. A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood100, 905–911 (2002). CASPubMed Google Scholar
Blaschuk, O. W. & Rowlands, T. M. Cadherins as modulators of angiogenesis and the structural integrity of blood vessels. Cancer Metastasis Rev.19, 1–5 (2000). CASPubMed Google Scholar
Abramovitch, R., Dafni, H., Smouha, E., Benjamin, L. E. & Neeman, M. In vivo prediction of vascular susceptibility to vascular susceptibility endothelial growth factor withdrawal: magnetic resonance imaging of C6 rat glioma in nude mice. Cancer Res.59, 5012–5016 (1999). CASPubMed Google Scholar
Ashrafpour, H. et al. Vasodilator effect and mechanism of action of vascular endothelial growth factor in skin vasculature. Am. J. Physiol. Heart. Circ. Physiol.286, H946–H954 (2004). CASPubMed Google Scholar
Inai, T. et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am. J. Pathol.165, 35–52 (2004). CASPubMedPubMed Central Google Scholar
Thorpe, P. E. Vascular targeting agents as cancer therapeutics. Clin. Cancer Res.10, 415–427 (2004). PubMed Google Scholar
Dowlati, A. et al. A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res.62, 3408–3416 (2002). CASPubMed Google Scholar
Gadgeel, S. M., LoRusso, P. M., Wozniak, A. J. & Wheeler, C. A dose-escalation study of the novel vascular–targeting agent, ZD6126, in patients with solid tumors. in Proc. Am. Soc. Clin. Oncol.24, 438 (2002). Google Scholar
Galbraith, S. M. et al. Effects of 5,6-dimethylxanthenone-4-acetic acid on human tumor microcirculation assessed by dynamic contrast-enhanced magnetic resonance imaging. J. Clin. Oncol.20, 3826–3840 (2002). CASPubMed Google Scholar
Anderson, H. L. et al. Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate. J. Clin. Oncol.21, 2823–2830 (2003). CASPubMed Google Scholar
Galbraith, S. M. et al. Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J. Clin. Oncol.21, 2831–2842 (2003). Report of the magnetic-resonance-imaging studies in the UK-based Phase I and II clinical trial of CA-4-P. This report shows that the pattern of vascular effects observed in humans is very similar to that predicted from animal studies. CASPubMed Google Scholar
Stevenson, J. P. et al. Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow. J. Clin. Oncol.21, 4428–4438 (2003). CASPubMed Google Scholar
Tolcher, A. W. et al. Phase I, pharmacokinetic, and DCE-MRI correlative study of AVE8062A, an antivascular combretastatin analogue, administered weekly for 3 weeks every 28 days. in Proc. Am. Soc. Clin. Oncol.22, 834 (2003). Google Scholar
Evelhoch, J. L. et al. Magnetic resonance imaging measurements of the response of murine and human tumors to the vascular-targeting agent ZD6126. Clin. Cancer Res.10, 3650–3657 (2004). CASPubMed Google Scholar
Young, S. L. & Chaplin, D. J. Combretastatin A4 phosphate: background and current clinical status. Expert Opin. Investig. Drugs13, 1171–1182 (2004). CASPubMed Google Scholar
Steel, G. G. & Peckham, M. J. Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int. J. Radiat. Oncol. Biol. Phys.5, 85–91 (1979). CASPubMed Google Scholar
Siemann, D. W. Vascular targeting agents. Horizons in Cancer Therapeutics: from Bench to Bedside3, 4–15 (2002). Google Scholar
Cooney, M. M. et al. Cardiovascular safety profile of combretastatin a4 phosphate in a single-dose phase I study in patients with advanced cancer. Clin. Cancer Res.10, 96–100 (2004). CASPubMed Google Scholar
Rustin, G. J. et al. 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a novel antivascular agent: phase I clinical and pharmacokinetic study. Br. J. Cancer88, 1160–1167 (2003). CASPubMedPubMed Central Google Scholar
Li, L., Rojiani, A. & Siemann, D. Targeting the tumor vasculature with combretastatin A-4 disodium phosphate: effects on radiation therapy. Int. J. Radiat. Oncol. Biol. Phys.42, 899–903 (1998). CASPubMed Google Scholar
Wilson, W. R., Li, A. E., Cowan, D. S. & Siim, B. G. Enhancement of tumor radiation response by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid. Int. J. Radiat. Oncol. Biol. Phys.42, 905–908 (1998). CASPubMed Google Scholar
Horsman, M. R. et al. Combretastatins: novel vascular targeting drugs for improving anti-cancer therapy. Combretastatins and conventional therapy. Adv. Exp. Med. Biol.476, 311–323 (2000). CASPubMed Google Scholar
Landuyt, W. et al. In vivo antitumor effect of vascular targeting combined with either ionizing radiation or anti-angiogenesis treatment. Int. J. Radiat. Oncol. Biol. Phys.49, 443–450 (2001). CASPubMed Google Scholar
Murata, R., Siemann, D. W., Overgaard, J. & Horsman, M. R. Improved tumor response by combining radiation and the vascular-damaging drug 5,6-dimethylxanthenone-4-acetic acid. Radiat. Res.156, 503–509 (2001). CASPubMed Google Scholar
Murata, R., Siemann, D. W., Overgaard, J. & Horsman, H. R. Interaction between combretastatin A-4 disodium phosphate and radiation in murine tumors. Radiother. Oncol.60, 155–161 (2001). CASPubMed Google Scholar
Siemann, D. W. & Rojiani, A. M. Enhancement of radiation therapy by the novel vascular targeting agent ZD6126. Int. J. Radiat. Oncol. Biol. Phys.53, 164–171 (2002). CASPubMed Google Scholar
Siemann, D. W., Mercer, E., Lepler, S. & Rojiani, A. M. Vascular targeting agents enhance chemotherapeutic agent activities in solid tumor therapy. Int. J. Cancer99, 1–6 (2002). CASPubMed Google Scholar
Bilenker, J. H. et al. Phase I trial of combretastatin a-4 phosphate with carboplatin. Clin. Cancer Res.11, 1527–1533 (2005). CASPubMed Google Scholar
Jain, R. K. Delivery of molecular medicine to solid tumors. Science271, 1079–1080 (1996). CASPubMed Google Scholar
Pedley, R. B. et al. Enhancement of antibody-directed enzyme prodrug therapy in colorectal xenografts by an antivascular agent. Cancer Res.59, 3998–4003 (1999). CASPubMed Google Scholar
Pedley, R. B. et al. Synergy between vascular targeting agents and antibody-directed therapy. Int. J. Radiat. Oncol. Biol. Phys.54, 1524–1531 (2002). CASPubMed Google Scholar
Grosios, K., Loadman, P. M., Swaine, D. J., Pettit, G. R. & Bibby, M. C. Combination chemotherapy with combretastatin A-4 phosphate and 5-fluorouracil in an experimental murine colon adenocarcinoma. Anticancer Res.20, 229–234 (2000). CASPubMed Google Scholar
Garcia-Barros, M. et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science300, 1155–1159 (2003). CASPubMed Google Scholar
Wachsberger, P., Burd, R. & Dicker, A. P. Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. Clin. Cancer Res.9, 1957–1971 (2003). CASPubMed Google Scholar
Siemann, D. W. & Horsman, M. R. Targeting the tumor vasculature: a strategy to improve radiation therapy. Expert. Rev. Anticancer Ther.4, 321–327 (2004). An excellent review of the interaction of vascular-targeting agents with radiotherapy and the issues that need to be addressed. CASPubMed Google Scholar
El-Emir, E. et al. Tumour parameters affected by combretastatin A-4 phosphate therapy in a human colorectal xenograft model in nude mice. Eur. J. Cancer41, 799–806 (2005). CASPubMed Google Scholar
Wachsberger, P. R. et al. Effect of the tumor vascular-damaging agent, ZD6126, on the radioresponse of U87 glioblastoma. Clin. Cancer. Res.11, 835–842 (2005). CASPubMed Google Scholar
Boehle, A. S., Sipos, B., Kliche, U., Kalthoff, H. & Dohrmann, P. Combretastatin A-4 prodrug inhibits growth of human non-small cell lung cancer in a murine xenotransplant model. Ann. Thorac. Surg.71, 1657–1665 (2001). CASPubMed Google Scholar
Siemann, D. W. & Shi, W. Efficacy of combined antiangiogenic and vascular disrupting agents in treatment of solid tumors. Int. J. Radiat. Oncol. Biol. Phys.60, 1233–1240 (2004). CASPubMed Google Scholar
Siim, B. G., Denny, W. A. & Wilson, W. R. Nitro reduction as an electronic switch for bioreductive drug activation. Oncol. Res.9, 357–369 (1997). CASPubMed Google Scholar
Theys, J. et al. Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium acetobutylicum. Cancer Gene Ther.8, 294–297 (2001). CASPubMed Google Scholar
Kobayashi, H. et al. Expression of α-smooth muscle actin in benign or malignant ovarian tumors. Gyn. Oncol.48, 308–313 (1993). CAS Google Scholar
Hashizume, H. et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol.156, 1363–1380 (2000). CASPubMedPubMed Central Google Scholar
Paku, S. & Paweletz, N. First steps of tumor-related angiogenesis. Lab. Invest.65, 334–346 (1991). CASPubMed Google Scholar
Baluk, P., Morikawa, S., Haskell, A., Mancuso, M. & McDonald, D. M. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am. J. Pathol.163, 1801–1815 (2003). PubMedPubMed Central Google Scholar
Jain, R. K. Transport of molecules across tumor vasculature. Cancer Metastasis Rev.6, 559–593 (1987). CASPubMed Google Scholar
Dvorak, H. F., Nagy, J. A. & Dvorak, A. M. Structure of solid tumors and their vasculature: implications for therapy with monoclonal antibodies. Cancer Cells3, 77–85 (1991). CASPubMed Google Scholar
Boucher, Y., Baxter, L. T. & Jain, R. K. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res.50, 4478–4484 (1990). CASPubMed Google Scholar
Jain, R. K. & Ward-Hartley, K. Tumor blood flow- characterization, modifications and role in hyperthermia. IEEE Trans. on sonics & ultrasonicsSU-31, 504–526 (1984). Google Scholar
Gillies, R. J., Schornack, P. A., Secomb, T. W. & Raghunand, N. Causes and effects of heterogenous perfusion in tumors. Neoplasia1, 197–207 (1999). CASPubMedPubMed Central Google Scholar
Konerding, M. A. et al. Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br. J. Cancer80, 724–732 (1999). CASPubMedPubMed Central Google Scholar
Sevick, E. M. & Jain, R. K. Geometric resistance to blood flow in solid tumors ex vivo: effects of tumor size and perfusion pressure. Cancer Res.49, 3506–3512 (1989). CASPubMed Google Scholar
Lominadze, D. & Mchedlishvili, G. Red blood cell behaviour at low flow rate in microvessels. Microvasc. Res.58, 187–189 (1999). CASPubMed Google Scholar
Tozer, G. M., Lewis, S., Michalowski, A. & Aber, V. The relationship between regional variations in blood flow and histology in a transplanted rat fibrosarcoma. Br. J. Cancer61, 250–257 (1990). CASPubMedPubMed Central Google Scholar
Mueller-Klieser, W., Vaupel, P. & Manz, R. Intracapillary oxyhemoglobin saturation of malignant tumors in humans. Int. J. Radiat. Oncol. Biol. Phys.7, 1397–1404 (1981). CASPubMed Google Scholar
Vaupel, P. & Hockel, M. Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance. Int. J. Oncol.17, 869–879 (2000). CASPubMed Google Scholar
Jain, R. K. & Baxter, L. T. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res.48, 7022–7032 (1988). An excellent analysis of the role of interstitial pressure in the delivery of macromolecules to tumour tissue. CASPubMed Google Scholar