A role for Kaiso–p120ctn complexes in cancer? (original) (raw)
Daniel, J. M. & Reynolds, A. B. The catenin p120ctn interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol. Cell. Biol.19, 3614–3623 (1999). Reports the discovery and authentication of p120ctn's interaction with Kaiso, and indicates a role of p120ctn in the nucleus. ArticleCAS Google Scholar
Reynolds, A. B. & Carnahan, R. H. Regulation of cadherin stability and turnover by p120ctn: implications in disease and cancer. Semin. Cell Dev. Biol.15, 657–663 (2004). ArticleCAS Google Scholar
Reynolds, A. B. & Roczniak-Ferguson, A. Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene23, 7947–7956 (2004). ArticleCAS Google Scholar
Hatzfeld, M. The p120 family of cell adhesion molecules. Eur. J. Cell Biol.84, 205–214 (2005). ArticleCAS Google Scholar
Prokhortchouk, A. et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev.15, 1613–1618 (2001). Reports the discovery of Kaiso's direct association with methylated CpG sequences, indicating a role in methylation-dependent transcriptional silencing. ArticleCAS Google Scholar
Collins, T., Stone, J. R. & Williams, A. J. All in the family: the BTB/POZ, KRAB, and SCAN domains. Mol. Cell. Biol.21, 3609–3615 (2001). ArticleCAS Google Scholar
Kiefer, H. et al. ZENON, a novel POZ Kruppel-like DNA binding protein associated with differentiation and/or survival of late postmitotic neurons. Mol. Cell. Biol.25, 1713–1729 (2005). ArticleCAS Google Scholar
Yoon, H. G., Chan, D. W., Reynolds, A. B., Qin, J. & Wong, J. M. N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol. Cell12, 723–734 (2003). First report of Kaiso's association with a specific transcriptional co-repressor, and indication of NCOR1's role in Kaiso-mediated gene repression of the methylatedMTA2gene locus. ArticleCAS Google Scholar
Daniel, J. M., Spring, C. M., Crawford, H. C., Reynolds, A. B. & Baig, A. The p120ctn-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucl. Acid Res.30, 2911–2919 (2002). Reports the identification of a Kaiso sequence-specific consensus site and the comparison of Kaiso's association with this consensus site and the distinct methylation-dependent site. ArticleCAS Google Scholar
Kim, S. W. et al. Non-canonical Wnt signals are modulated by the Kaiso transcriptional repressor and p120-catenin. Nature Cell Biol.6, 1212–1220 (2004). This report shows that Kaiso is essential toX. laevisdevelopment and that Wnt11 is a physiologically relevant and a direct sequence-specific Kaiso gene target. ArticleCAS Google Scholar
Park, J. I. et al. Kaiso–p120-catenin and TCF–β-catenin complexes coordinately regulate canonical Wnt gene targets. Dev. Cell8, 843–854 (2005). This report shows that Kaiso works in conjunction with TCF in repressing known canonical Wnt target genes inX. laevis. This report also examines the regulation ofSiamoisand the role of p120ctn in the relief of Kaiso-mediated transcriptional repression. ArticleCAS Google Scholar
Kim, S. W. et al. Isolation and characterization of XKaiso, a transcriptional repressor that associates with the catenin Xp120ctn in Xenopus laevis. J. Biol. Chem.277, 8202–8208 (2002). ArticleCAS Google Scholar
Kelly, K. F., Spring, C. M., Otchere, A. A. & Daniel, J. M. NLS-dependent nuclear localization of p120ctn is necessary to relieve Kaiso-mediated transcriptional repression. J. Cell Sci.117, 2675–2786 (2004). ArticleCAS Google Scholar
Spring, C. M. et al. The catenin p120ctn inhibits Kaiso-mediated transcriptional repression of the β-catenin/TCF target gene matrilysin. Exp. Cell Res.305, 253–265 (2005). ArticleCAS Google Scholar
Rodova, M., Kelly, K. F., VanSaun, M., Daniel, J. M. & Werle, M. J. Regulation of the rapsyn promoter by Kaiso and δ-catenin. Mol. Cell. Biol.24, 7188–7196 (2004). ArticleCAS Google Scholar
Kaplan, J. & Calame, K. The ZiN/POZ domain of ZF5 is required for both transcriptional activation and repression. Nucl. Acid Res.25, 1108–1116 (1997). ArticleCAS Google Scholar
Peukert, K. et al. An alternative pathway for gene regulation by Myc. EMBO J.16, 5672–5686 (1997). ArticleCAS Google Scholar
Ruzov, A. et al. Kaiso is a genome-wide repressor of transcription that is essential for amphibian development. Development131, 6185–6194 (2004). Indicates Kaiso's essential role in repressing a large number of genes before zygotic transcription inX. laevis, with emphasis on methylation-dependent gene-regulatory effects. ArticleCAS Google Scholar
Stancheva, I. & Meehan, R. R. Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos. Genes Dev.14, 313–327 (2000). CASPubMedPubMed Central Google Scholar
Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genet.33 (Suppl.), 245–254 (2003). ArticleCAS Google Scholar
Meehan, R. R. DNA methylation in animal development. Semin. Cell Dev. Biol.14, 53–65 (2003). ArticleCAS Google Scholar
Brantjes, H., Barker, N., van Es, J. & Clevers, H. TCF: Lady Justice casting the final verdict on the outcome of Wnt signalling. Biol. Chem.383, 255–261 (2002). ArticleCAS Google Scholar
Kelly, K. F., Otchere, A. A., Graham, M. & Daniel, J. M. Nuclear import of the BTB/POZ transcriptional regulator Kaiso. J. Cell Sci.117, 6143–6152 (2004). ArticleCAS Google Scholar
Hyman, J., Chen, H., Di Fiore, P. P., De Camilli, P. & Brunger, A. T. Epsin 1 undergoes nucleocytosolic shuttling and its Eps15 interactor NH2-terminal homology (ENTH) domain, structurally similar to armadillo and HEAT repeats, interacts with the transcription factor promyelocytic leukemia Zn2+ finger protein (PLZF). J. Cell Biol.149, 537–546 (2000). ArticleCAS Google Scholar
Peifer, M. & Yap, A. S. Traffic control: p120-catenin acts as a gatekeeper to control the fate of classical cadherins in mammalian cells. J. Cell Biol.163, 437–440 (2003). ArticleCAS Google Scholar
Daniel, J. M. & Reynolds, A. B. Tyrosine phosphorylation and cadherin/catenin function. Bioessays19, 883–891 (1997). ArticleCAS Google Scholar
Zondag, G. C., Reynolds, A. B. & Moolenaar, W. H. Receptor protein-tyrosine phosphatase RPTPmu binds to and dephosphorylates the catenin p120(ctn). J. Biol. Chem.275, 11264–11269 (2000). ArticleCAS Google Scholar
Mariner, D. J. et al. Identification of Src phosphorylation sites in the catenin p120ctn. J. Biol. Chem.276, 28006–28013 (2001). ArticleCAS Google Scholar
Xia, X., Mariner, D. J. & Reynolds, A. B. Adhesion-associated and PKC-modulated changes in serine/threonine phosphorylation of p120-catenin. Biochemistry42, 9195–9204 (2003). ArticleCAS Google Scholar
Mariner, D. J., Davis, M. A. & Reynolds, A. B. EGFR signaling to p120-catenin through phosphorylation at Y228. J. Cell Sci.117, 1339–1350 (2004). ArticleCAS Google Scholar
Ozawa, M. & Ohkubo, T. Tyrosine phosphorylation of p120(ctn) in v-Src transfected L cells depends on its association with E-cadherin and reduces adhesion activity. J. Cell Sci.114, 503–512 (2001). CASPubMed Google Scholar
Baki, L. et al. Presenilin-1 binds cytoplasmic epithelial cadherin, inhibits cadherin/p120 association, and regulates stability and function of the cadherin–catenin adhesion complex. Proc. Natl Acad. Sci. USA98, 2381–2386 (2001). ArticleCAS Google Scholar
Noren, N. K., Liu, B. P., Burridge, K. & Kreft, B. p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J. Cell Biol.150, 567–580 (2000). ArticleCAS Google Scholar
Anastasiadis, P. Z. et al. Inhibition of RhoA by p120 catenin. Nature Cell Biol.2, 637–644 (2000). ArticleCAS Google Scholar
Anastasiadis, P. Z. & Reynolds, A. B. Regulation of Rho GTPases by p120-catenin. Curr. Opin. Cell Biol.13, 604–610 (2001). ArticleCAS Google Scholar
Grosheva, I., Shtutman, M., Elbaum, M. & Bershadsky, A. D. p120 catenin affects cell motility via modulation of activity of Rho-family GTPases: a link between cell–cell contact formation and regulation of cell locomotion. J. Cell Sci.114, 695–707 (2001). CASPubMed Google Scholar
Chen, X., Kojima, S., Borisy, G. G. & Green, K. J. p120 catenin associates with kinesin and facilitates the transport of cadherin–catenin complexes to intercellular junctions. J. Cell Biol.163, 547–557 (2003). ArticleCAS Google Scholar
Yanagisawa, M. et al. A novel interaction between kinesin and p120 modulates p120 localization and function. J. Biol. Chem.279, 9512–9521 (2004). ArticleCAS Google Scholar
Goodwin, M., Kovacs, E. M., Thoreson, M. A., Reynolds, A. B. & Yap, A. S. Minimal mutation of the cytoplasmic tail inhibits the ability of E-cadherin to activate Rac but not phosphatidylinositol 3-kinase: direct evidence of a role for cadherin-activated Rac signaling in adhesion and contact formation. J. Biol. Chem.278, 20533–20539 (2003). ArticleCAS Google Scholar
Krakstad, B. F., Ardawatia, V. V. & Aragay, A. M. A role for G-α12/G-α13 in p120ctn regulation. Proc. Natl Acad. Sci. USA101, 10314–10319 (2004). ArticleCAS Google Scholar
Roczniak-Ferguson, A. & Reynolds, A. B. Regulation of p120-catenin nucleocytoplasmic shuttling activity. J. Cell Sci.116, 4201–4212 (2003). ArticleCAS Google Scholar
van Hengel, J., Vanhoenacker, P., Staes, K. & van Roy, F. Nuclear localization of the p120ctn Armadillo-like catenin is counteracted by a nuclear export signal and by E-cadherin expression. Proc. Natl Acad. Sci. USA96, 7980–7985 (1999). ArticleCAS Google Scholar
Aho, S. et al. Specific sequences in p120ctn determine subcellular distribution of its multiple isoforms involved in cellular adhesion of normal and malignant epithelial cells. J. Cell Sci.115, 1391–1402 (2002). CASPubMed Google Scholar
De Calisto, J., Araya, C., Marchant, L., Riaz, C. F. & Mayor, R. Essential role of non-canonical Wnt signalling in neural crest migration. Development132, 2587–2597 (2005). ArticleCAS Google Scholar
Jopling, C. & den Hertog, J. Fyn/Yes and non-canonical Wnt signalling converge on RhoA in vertebrate gastrulation cell movements. EMBO Rep.6, 426–431 (2005). ArticleCAS Google Scholar
Garriock, R. J., D'Agostino, S. L., Pilcher, K. C. & Krieg, P. A. Wnt11-R, a protein closely related to mammalian Wnt11, is required for heart morphogenesis in Xenopus. Dev. Biol.279, 179–192 (2005). ArticleCAS Google Scholar
Pandur, P., Lasche, M., Eisenberg, L. M. & Kuhl, M. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature418, 636–641 (2002). ArticleCAS Google Scholar
Tao, Q. et al. Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell120, 857–871 (2005). ArticleCAS Google Scholar
Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell. Dev. Biol.20, 781–810 (2004). ArticleCAS Google Scholar
Strutt, D. Frizzled signalling and cell polarisation in Drosophila and vertebrates. Development130, 4501–4513 (2003). ArticleCAS Google Scholar
Tada, M., Concha, M. L. & Heisenberg, C. P. Non-canonical Wnt signalling and regulation of gastrulation movements. Semin. Cell Dev. Biol.13, 251–260 (2002). ArticleCAS Google Scholar
Yap, A. S., Niessen, C. M. & Gumbiner, B. M. The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J. Cell Biol.141, 779–789 (1998). ArticleCAS Google Scholar
Ohkubo, T. & Ozawa, M. p120(ctn) binds to the membrane-proximal region of the E-cadherin cytoplasmic domain and is involved in modulation of adhesion activity. J. Biol. Chem.274, 21409–21415 (1999). ArticleCAS Google Scholar
Pokutta, S. & Weis, W. I. The cytoplasmic face of cell contact sites. Curr. Opin. Struct. Biol.12, 255–262 (2002). ArticleCAS Google Scholar
Xiao, K. et al. Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells. J. Cell Biol.163, 535–545 (2003). ArticleCAS Google Scholar
Paulson, A. F., Fang, X., Ji, H., Reynolds, A. B. & McCrea, P. D. Misexpression of the catenin p120(ctn)1A perturbs Xenopus gastrulation but does not elicit Wnt-directed axis specification. Dev. Biol.207, 350–363 (1999). ArticleCAS Google Scholar
Mayerle, J. et al. Up-regulation, nuclear import, and tumor growth stimulation of the adhesion protein p120ctn in pancreatic cancer. Gastroenterology124, 949–960 (2003). ArticleCAS Google Scholar
Kallakury, B. V. S., Sheehan, C. E. & Ross, J. S. Co-downregulation of cell adhesion proteins α- and β-catenins, p120CTN, E-cadherin, and CD44 in prostatic adenocarcinomas. Hum. Pathol.32, 849–855 (2001). ArticleCAS Google Scholar
Thoreson, M. A. & Reynolds, A. B. Altered expression of the catenin p120 in human cancer: implications for tumor progression. Differentiation70, 583–589 (2002). ArticleCAS Google Scholar
Sarrio, D. et al. Cytoplasmic localization of p120ctn and E-cadherin loss characterize lobular breast carcinoma from preinvasive to metastatic lesions. Oncogene23, 3272–3283 (2004). ArticleCAS Google Scholar
Shibata, T., Kokubu, A., Sekine, S., Kanai, Y. & Hirohashi, S. Cytoplasmic p120ctn regulates the invasive phenotypes of E-cadherin-deficient breast cancer. Am. J. Pathol.164, 2269–2278 (2004). ArticleCAS Google Scholar
Soubry, A. et al. Expression and nuclear location of the transcriptional repressor Kaiso is regulated by the tumor microenvironment. Cancer Res.65, 2224–2233 (2005). The first study of Kaiso expression in human tumours and tumour cell lines under various condition. Showed the surprising dynamics of Kaiso's shuttling between the nucleus and the cytoplasm. This phenomenon is probably a crucial factor in regulating the function of Kaiso. ArticleCAS Google Scholar
Kirikoshi, H., Sekihara, H. & Katoh, M. Molecular cloning and characterization of human WNT11. Int. J. Mol. Med.8, 651–656 (2001). CASPubMed Google Scholar
Zhu, H. N. et al. Analysis of Wnt gene expression in prostate cancer: mutual inhibition by WNT11 and the androgen receptor. Cancer Res.64, 7918–7926 (2004). ArticleCAS Google Scholar
Bissell, M. J. & Labarge, M. A. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell7, 17–23 (2005). CASPubMedPubMed Central Google Scholar
Yao, Y. L. & Yang, W. M. The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity. J. Biol. Chem.278, 42560–42568 (2003). ArticleCAS Google Scholar
Kumar, R., Wang, R. A. & Bagheri-Yarmand, R. Emerging roles of MTA family members in human cancers. Semin. Oncol.30, 30–37 (2003). ArticleCAS Google Scholar
Hofer, M. D., Menke, A., Genze, F., Gierschik, P. & Giehl, K. Expression of MTA1 promotes motility and invasiveness of PANC-1 pancreatic carcinoma cells. Br. J. Cancer90, 455–462 (2004). ArticleCAS Google Scholar
Sansom, O. J. et al. Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nature Genet.34, 145–147 (2003). ArticleCAS Google Scholar
Su, L. K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science256, 668–670 (1992). ArticleCAS Google Scholar
Costoya, J. A. & Pandolfi, P. P. The role of promyelocytic leukemia zinc finger and promyelocytic leukemia in leukemogenesis and development. Curr. Opin. Hematol.8, 212–217 (2001). ArticleCAS Google Scholar
Melnick, A. & Licht, J. D. Deconstructing a disease: RARα, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood93, 3167–3215 (1999). CASPubMed Google Scholar
Ahmad, K. F. et al. Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol. Cell12, 1551–1564 (2003). ArticleCAS Google Scholar
Deltour, S., Pinte, S., Guerardel, C., Wasylyk, B. & Leprince, D. The human candidate tumor suppressor gene HIC1 recruits CtBP through a degenerate GLDLSKK motif. Mol. Cell. Biol.22, 4890–4901 (2002). ArticleCAS Google Scholar
Chen, W. Y. et al. Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nature Genet.33, 197–202 (2003). ArticleCAS Google Scholar
Pinte, S. et al. The tumor suppressor gene HIC1 (hypermethylated in cancer 1) is a sequence-specific transcriptional repressor: definition of its consensus binding sequence and analysis of its DNA binding and repressive properties. J. Biol. Chem.279, 38313–38324 (2004). ArticleCAS Google Scholar
Maeda, T. et al. Role of the proto-oncogene Pokemon in cellular transformation and ARF repression. Nature433, 278–285 (2005). ArticleCAS Google Scholar
Davies, J. M. et al. Novel BTB/POZ domain zinc-finger protein, LRF, is a potential target of the LAZ-3/BCL-6 oncogene. Oncogene18, 365–375 (1999). ArticleCAS Google Scholar
Moon, R. T., Kohn, A. D., De Ferrari, G. V. & Kaykas, A. WNT and β-catenin signalling: diseases and therapies. Nature Rev. Genet.5, 689–699 (2004). Article Google Scholar
Habas, R. & Dawid, I. B. Dishevelled and Wnt signaling: is the nucleus the final frontier? J. Biol.4, 2 (2005). Article Google Scholar